Operator Overloading

o Operator overloading is a very important
capability.
= It allows you to make standard C++ operators, such as

+, -, * and so on, work with objects of your own data
types.

m We want to write
if (box1 > box2)

= instead of
if (IsGreaterThan(box1, box2))

o Let us recall some background of function
overloading (Chapter 6).

17

Function Overloading

o Function overloading allows you to use the same
function name for defining several functions as
long as they each have different parameter lists.

o When the function is called, the compiler chooses
the correct version according to the list of
arguments you supply.

o The following functions share a common name,
but have a different parameter list:
= int max(int array[], int |en);
= | ong max(long array[], int len);
= doubl e max(double array[], int len);

18

Ex6_07.cpp on P.293

0 Three overloaded functions of max()

o In main(), C compiler inspect the
argument list to choose different version
of functions.

19

Signature

O The signature of a function is determined by its
name and its parameter list.

o All functions in a program must have unique
sighatures

o The following example is not valid overloading
= double max(long array[], int len);
= | ong max(long array[], int len);

o A different return type does not distinguish a
function, if the signatures are the same.

20

Implementing an Overloaded Operator

cl ass CBox

{
publ i c:

bool operator> (CBox& aBox) const;
}
0 The word oper at or here is a keyword.

0 You declare the oper at or >() function as

const because it doesn't modify any data
members of the class. (P.369)

21

Using an Overloaded Operator

o if (box1 > box2)
cout << “box1 is greater than box2”;

o if (boxl.operator>(box2))

if(box1 > box2)

Function argument l

bool CBox::operator>(const CBox& aBox) const

{

—— The aobject pointed to by thisj

return (this->Volume()) > (aBox.Volume());

}
Figure 8-3

22

Ex3_03.cpp on P.422

bool CBox: :operator> (CBox& aBox) const

{

return this->Volume() > aBox. Vol une();

}

o The left operand is defined implicitly by the
pointer this.

o The basic > operator returns a value of type int
= 1 for true
= O for false.

o It will be automatically converted to bool.

23

Overloading the Assignment Operator

o What's wrong with the default assignment?

= It simply provides a member-by-member
copying process, similar to that of the default
copy constructor.

= They suffer from the same problem, when
some data members are allocated dynamically.

24

Fixing the Problem

CMessage& operator= (const CMessage& aMess)
{
/| Release nmenory for 1st operand
delete [] pnessage;
pnessage = new char [strlen(aMess. pnessage) + 1];

/| Copy 2" operand string to 1st
strcpy(this->pnessage, alMess. pnessage);

// Return a reference to 1st operand
return *this;

25

Why Do You Need to Return Something?

O Consider this statement
= mottol = motto2 = motto3;

0 The assignment operator is right-
associative, so it translates into
= mottol = (motto2.operator=(motto3));
= mottol.operator=(motto2.operator=(motto3));

O You must at least return a CMessage
object.

26

Why Do You Need to Return a Reference?

o Consider another example

= (mottol = motto2) = motto3;
o This translates into

= (mottol.operator=(motto2)) = motto3;
o If the return type is merely CMessage

instead of a reference, a temporary copy
of the original object is returned.

= Then you are assigning a value to a temporary
object!

= Make sure that your return type is CMessage&.

27

Check Addresses, If Equal

o The first thing that the operator function
does is to delete the memory allocated to
the first object, and reallocate sufficient
memory to accommodate the new string.

o What happens to this statement?
mnottol = nottol

o Add this checking:
I f (this == &aMess)
return *this;

28

Overloading the Addition Operator

o Suppose we define the sum of two CBox object as
a CBox object which is large enough to contain the
other two boxes stacked on top of each other.

o See Figure 8-4.

CBox CBox: : operator+(const CBox& aBox) const

{

return CBox(
m Length > aBox. m Length ? mLength : aBox. m Length,
mWdth > aBox. mWdth ? mWdth : aBox. m Wdt h,
M Hei ght + aBox. m Hei ght);

}
0 Ex8_06.cpp on P.434

29

Using Classes

o We want to pack candy into candy boxes,
and pack candy boxes to cartons.

o The objects candy, candybox, carton, all
belong to the CBox class.

0 We are packing CBox objects into other
CBox objects.

30

Basic Operations of the CBox Class

o Calculate the volume of a
CBox

= Volume()
o Compare the volumes of
two CBox objects to

determine which is the
larger.

= operator>()

o Compare the volume of a
CBox object with a
specified value

m We have this for the >
operator (P.414)

o Add two CBox object to
produce a CBox object

= operator+()

o Multiply a CBox object by

an inte%er to provide a
CBox object

Determine how many CBox
objects of a given size can
be packed in another CBox
object of a given size.
= This is effectively division,
so you could implement

this by overloading the /
operator.

Determine the volume of
s%ace remaining in a CBox
object after packing it with
the maximum number of
CBox objects of a given
size.

= Wasted spaced.

31

The Multiply Operation

o If nis even, stack t
boxes side-by-side

ne
DY

doubling the m_Wid
value and only
multiplying the
m_Height value by
half of n.

th

CBox Multiply: n odd
: 3*aBox \I
3%H \
-« | —>»
W
\x%\
- | —>»
CBox Multiply: n even T
- 6*aB QI\.’

32

[/ CBox multiply operator this*n
CBox operator*(int n) const
{
1f (n % 2)
return CBox(m Length, M W dth,
n*m Height); // n odd
el se

return CBox(m Length, 2.0*m Wdth,
(n/f2)*m Height); // n even

33

The Division Operation

0 Correct some mistakes in Figure 8-7.

\

W=6 aBox
L=8
W= lz ol
8/3=2
bBox bBox \
6/2=3| bBox bBox
bBox bBox
2/1 =2

Figure 87

With this configuration
12 can be stored

W=2 bhBox

H=d (=3
8/2=4
o (= (= o \
o] o m]
£ g 2 g \
6/2=3 | .
(=3 (=3 =3 (=3
m m m m
£ g g g
21 =2 g

<>

Result is 16 34

Member Function oper at or/ ()

o P.451
I nt operator/(const CBox& aBox)

{

int tcl
int tc2

0;
0;

tcl = static_cast<int>((m.Length / aBox.m Length)) *
static _cast<int>((mWdth / aBox. mWdth));

tc2 = static_cast<int>((mlLength / aBox. MW dth)) *
static_cast<int>((mWdth / aBox. m Length));

return

static_cast<int>((m Hei ght/aBox. m Height)*(tcl>tc2 ?

tcl : tc2));

35

Member Function oper at or %)

o It would be easy to check the remaining
space using the functions you have
already defined:

/[l Operator to return the free volune in a packed CBox
doubl e operator% const CBox& aBox, const CBox& bBox)

{

return aBox. Vol ume() - (aBox / bBox) * bBox. Vol une();

}

36

