Behavior and Classification of NAT

Devices and Implications for NAT Traversal

Andreas Miller and Georg Carle, Technische Universitat Minchen

Andreas Klenk, Universitat Tubingen

Abstract

For a long time, traditional client-server communication was the predominant com-
munication paradigm of the Internet. Network address translation devices emerged
to help with the limited availability of IP addresses and were designed with the
hypothesis of asymmetric connection establishment in mind. But with the growing
success of peer-to-peer applications, this assumption is no longer true. Consequent-
ly network address translation traversal became a field of intensive research and
standardization for enabling efficient operation of new services. This article pro-
vides a comprehensive overview of NAT and introduces established NAT traversal
techniques. A new categorization of applications into four NAT traversal service
categories helps to determine applicable techniques for NAT traversal. The interac-
tive connectivity establishment framework is categorized, and a new framework is
introduced that addresses scenarios that are not supported by ICE. Current results
from a field test on NAT behavior and the success ratio of NAT traversal tech-

niques support the feasibility of this classification.

hen the Internet Protocol (IP) was designed,

the growth of the Internet to its current size

was not imaginable. Therefore, it was reason-

able to use a fixed 32-bit field to identify a
host based on its IP address. This limited address range makes
it impossible to assign globally unique IPv4 addresses to the
growing number of networked devices. Furthermore, request-
ing an IP address for every newly added device results in an
unacceptable administration overhead. The authors in [1] pro-
pose to assign a number of public IP addresses to a designat-
ed border router instead of configuring certain hosts with
addresses that can be routed globally. The border router is
then responsible for translating IP addresses between the pri-
vate and the public domains, allowing as many simultaneous
connections as public IP addresses were assigned. This allows
a host within the local network to access the Internet even
though it has a private IP address. This technique became
known as network address translation (NAT). Because the
translation of addresses breaks the end-to-end connectivity
model of the IP, newly developed services following the peer-
to-peer (P2P) paradigm such as file sharing, instant messag-
ing, and voice over IP (VoIP) applications suffer from the
existence of NAT. Thus, NAT traversal is an important prob-
lem today. And even in the future, after a possible success of
IPv6, companies and home users still might deploy NAT
devices to hide their topologies from Internet service providers
(ISPs). There are two possible approaches to the problem.
One direction within the Internet Engineering Task Force
(IETF) Behave Working Group [2] is to cope with existing
NAT implementations and to establish standards for the

detection of NAT behavior and for NAT traversal. On the
other hand, the IETF also standardizes behavioral properties
for NATSs to work in conjunction with IETF protocols (e.g.,
Datagram Congestion Control Protocol [DCCP], Internet
Control Message Protocol [ICMP], Stream Control Transmis-
sion Protocol [SCTP]). Enterprise class NATs are among the
first to incorporate new features introduced through standard-
ization. However, the large scale deployment of residential
gateways with NAT functionality prohibits the change of NAT
and requires the use of protocols that work with existing
NATSs. This is also the focus of this article, where we treat
NATS as black boxes rather than trying to change them.

NAT Behavior

Today, a NAT device usually is used to share a single public
IP address among a number of private end systems. The NAT
maintains a table, listing all connections between the public
and the private domains. For every connection attempt (e.g., a
Transmission Control Protocol synchronize [TCP SYN] pack-
et) coming from an internal host, the NAT creates a new
entry in the list. In NAT terminology this entry is called a
binding [3]. Each entry contains the source IP address and the
source port. The NAT replaces the source IP address with its
public IP address. The source port is replaced using one of
the strategies explained later in this section.

Although the concept of NAT was published as early as
1994 [1], no common approach for NAT emerged. Current
NAT implementations not only differ from vendor to vendor
but also from model to model, which leads to compatibility

14 0890-8044/08/$25.00 © 2008 IEEE

IEEE Network * September/October 2008

solomon
Highlight

solomon
Highlight

solomon
Highlight

solomon
Highlight

solomon
Highlight

Classification NAT property

Port preservation
No port preservation

OGNl Port overloading
Port multiplexing
Endpoint-independent
NAT binding Address- (port)-dependent

Connection-dependent

Independent
Address restricted
Address and port restricted

Endpoint filtering

B Table 1. NAT behavior categories and possible NAT properties.

issues. If an application works with one particular NAT, this
does not imply that it always works in a NATed environment.
Therefore, it is very important to understand and classify
existing NAT implementations in order to design applications
that can work in combination with current NATs. The classifi-
cation in this article is mainly derived from simple traversal of
User Datagram Protocol (UDP) through NAT (STUN) [4],
whereas the address binding and mapping behavior follows
the terminology used in RFC 4787 [5]. This section covers
only topics that are required for the understanding of this
article. A detailed discussion and further information (includ-
ing test results) is given in [6] (for TCP) and [5] (for UDP).

Binding covers “context based packet translation” [7], which
describes the strategy the NAT uses to assign a public trans-
port address (combination of IP address and port) to a new
state in the NAT. Filtering, or packet discard, shows how the
NAT handles (or discards) packets trying to use an existing
mapping. Table 1 shows the different categories and their pos-
sible properties. Port binding describes the strategy a NAT
uses for the assignment. With port preservation, the NAT
assigns an external port to a new connection; it attempts to
preserve the local port number if possible. Port overloading is
problematic and rarely occurs. A new connection takes over
the binding, and the old connection is dropped. Port multi-
plexing is a very common strategy where ports are demulti-
plexed based on the destination transport address. Incoming
packets can now carry the same destination port and are dis-
tinguished by the source transport address.

NAT binding deals with the reuse of existing bindings. That
is, if an internal host closes a connection and establishes a
new one from the same source port, NAT binding describes
the assignment strategy for the new connection. As shown in
Table 1, the NAT binding is organized into three categories.
With Endpoint Independent, the external port is only depen-
dent on the source transport address of the connection. As
long as a host establishes a connection from the same source
IP address and port, the mapping does not change. The
assignment is dependent on the internal and the external
transport address with the Address (Port) Dependent strategy.
As long as consecutive connections from the same source to
the same destination are established, the mapping does not
change. As soon as we use a different destination, the NAT
changes the external port. With a Connection Dependent bind-
ing, the NAT assigns a new port to every connection. We dis-
tinguish between NATS that increase the new port number by
a specific (and well predictable) delta and NATS that assign
random port numbers to the new mappings.

Endpoint filtering describes how existing mappings can be
used by external hosts and how a NAT handles incoming con-
nection attempts that are not part of a response. Independent
Filtering allows inbound connections independent of the

source transport address of the packet. As long as the destina-
tion transport address of a packet matches an existing state,
the packet is forwarded. With Address Restricted Filtering, the
NAT forwards only packets coming from the same host
(matching IP address) to which the initial packet was sent.
Address and Port Restricted Filtering also compares the source
port of the inbound packet in addition to address restricted
filtering.

NAT Traversal Problem

To work properly, the NAT must have access to the protocol
headers at layers 3 and 4 (in case of a network address port
translation [NAPT]). Additionally, for every incoming packet,
the NAT must already have a state listed in its table. Other-
wise, it cannot find the related internal host to which the
packet belongs. According to RFC 3027 [8], the NAT traver-
sal problem can be separated into three categories, which are
presented in this section. In addition to the three problems,
we identified Unsupported Protocols as a new category.

The first problem occurs if a protocol uses Realm-Specific
IP Addresses in its payload. That is, if an application layer pro-
tocol such as the Session Initiation Protocol (SIP) uses a
transport address from the private realm within its payload
signalizing where it expects a response. Because regular NATSs
do not operate above layer 4, application layer protocols typi-
cally fail in such scenarios. A possible solution is the use of an
application layer gateway (ALG) that extends the functionali-
ty of a NAT for specific protocols. However, an ALG sup-
ports only the application layer protocols that are specifically
implemented and may fail when encryption is used.

The second category is P2P Applications. The traditional
Internet consists of servers located in the public realm and
clients that actively establish connections to these servers.
This structure is well suited for NATSs because for every con-
nection attempt (e.g., a TCP SYN) coming from an internal
client, the NAT can add a mapping to its table. But unlike
client-server applications, a P2P connection can be initiated
by any of the peers regardless of their location. However, if a
peer in the private realm tries to act as a traditional server
(e.g., listening for a connection on a socket), the NAT is
unaware of incoming connections and drops all packets. A
solution could be that the peer located in the private domain
always establishes the connection. But what if two peers, both
behind a NAT, want to establish a connection to each other?
Even if the security policy would allow the connection, it can-
not be established.

The third category is a combination of the first two. Bun-
dled Session Applications, such as File Transfer Protocol
(FTP) or SIP/Session Description Protocol (SDP), carry
realm-specific IP addresses in their payload to establish an
additional session. The first session is usually referred to as
the control session, whereas the newly created session is
called the data session. The problem here is not only the
realm-specific IP addresses, but the fact that the data session
often is established from the public Internet toward the pri-
vate host, a direction the NAT does not permit (e.g., active
FTP).

Unsupported Protocols are typically newly developed trans-
port protocols such as the SCTP or the DCCP that cause
problems with NATSs even if an internal host initiates the con-
nection establishment. This is because current NATs do not
have built-in support for these protocols. The unsupported
protocols also cover protocols that cannot work with NATSs
because their layer 3 or layer 4 header is not available for
translation. This happens when using encryption protocols
such as IPSec.

IEEE Network * September/October 2008

solomon
Highlight

solomon
Highlight

solomon
Highlight

solomon
Highlight

solomon
Highlight

solomon
Highlight

= < = : wk
| Requester; {Service
a) b)

W Figure 1. NAT traversal service categories for applications: a) RNT; b) GSP; ¢) SPPS; d) SSP.

NAT Traversal Service Categories

Instead of classifying the NAT behavior (see classification in
STUN [4]), we defined four NAT traversal service categories,
each making different assumptions about the purpose of the
connection establishment and the infrastructure that is avail-
able. Our categorization emphasizes that the applicability of
many NAT traversal techniques depends on the support of a
combination of requester, the responder, globally reachable
infrastructure nodes, and the role of the application. On the
one hand, server applications set up a socket and wait for con-
nections (which also applies to P2P applications). On the
other hand, client applications such as VoIP clients actively
initiate a connection and wait for an answer on a different
port (bundled session applications). Other applications work
only across NATSs if both ends participate in the connection
establishment (unsupported protocols). Thus, we differentiate
between supporting a service and supporting a client. In this
article, the client is called the requester because it actively ini-
tiates a connection.

The behavior of the NAT is important because it allows or
prohibits certain NAT traversal techniques within one service
category. If only one end implements NAT traversal support
(e.g., by running a stand-alone framework or by built-in NAT
traversal functionality), NAT traversal techniques that rely on
a collaboration of both ends (e.g., ICE) are not applicable.

Our first category, requester side NAT traversal (RNT),
covers scenarios where only the requester side supports
NAT traversal (e.g., the application or the NAT itself).
RNT helps applications that actively participate in the con-
nection establishment and still suffer from the existence of
NATSs. Typical examples are applications that have prob-
lems with realm-specific IP addresses in their payload. This
applies to protocols using in-band signaling on the applica-
tion layer, which is related to bundled session applications
with asymmetric connection establishment (e.g., VoIP using
SIP/SDP).

The second category, global service provisioning (GSP),
assumes that the host providing the service implements NAT
traversal support, helping to make a service globally accessi-
ble. This is done by creating and maintaining a NAT mapping
that then accepts multiple connections from previously
unknown clients (Fig. 1). This is the main difference from
RNT, which only creates a NAT mapping for one particular
session (e.g., one call in the case of VoIP).

The last two categories assume support at both ends, the
service and the requester. On the one side, NAT traversal is
required to make a service behind a NAT globally accessible,
whereas on the other side, the support at the requester allows
the use of sophisticated techniques through coordinated
action. Thus, service provisioning using pre-signaling (SPPS)
extends the GSP category by the assumption that both hosts
have interoperable frameworks (e.g., ICE [9]; NAT, URIs,
Tunnels, SIP, and STUNT [NUTSS] [10]; NATBlaster [11]; or
NatTrav [12]) running. This allows a selection from all avail-
able NAT traversal solutions, which leads to a high success
rate of NAT traversal. In Fig. 1, the two hosts use a ren-
dezvous point to agree on a NAT traversal technique. After

creating the mapping in step 2, the service is accessible by any
host, depending on the selected NAT traversal technique and
the filtering strategy of the NAT. SPPS supports all types of
services where a one-to-one connection is sufficient and pre-
signaling is available.

The last category, secure service provisioning (SSP), is an
extension of SPPS and addresses scenarios that require autho-
rization of the remote party before initiating the NAT traver-
sal process. The hereby established channel must be accessible
only by the authorized remote party. This requires additional
functionality that enforces this policy and only allows autho-
rized users to access the service. The policy enforcement can
be done at the NAT itself, at a data relay, or at a firewall.
Table II depicts all four service categories with popular NAT
traversal techniques and shows the implications for automated
NAT traversal and required signaling. First we distinguish
between the service and the requester. “Support at the ser-
vice” means, for example, that a framework must be deployed
at the same host providing the service. The same applies to
the requester. “RP” means that a rendezvous point is required
for relaying data back and forth. “Signaling messages” means
that some sort of signaling protocol is used for NAT traversal.
Again, we differentiate between signaling at the service and
signaling at the requester. A rendezvous point for signaling
messages is required in case of pre-signaling. Finally, “stream
independent” describes the requirement for consecutive con-
nections. For example, a port forwarding entry must be creat-
ed only once, whereas hole punching [13] requires sending a
new hole punching packet for every new stream (with restrict-
ed filtering).

Table 2 shows the main differences of our service cate-
gories. RNT deals with bundled session applications that wait
on a port after initiating a session (e.g., via a SIP INVITE).
GSP requires only support of the service and aims to make a
service globally reachable for multiple clients. SPPS and SSP
combine these categories and require support at both ends.
The requester initiates pre-signaling to exchange information
about a global end point. The service then creates a mapping
in the NAT that can be used by the client.

Applicability of NAT Traversal Techniques for
NAT Traversal Service Categories

There are many different techniques for solving the NAT
traversal problem in specific scenarios, but none of them pro-
vides a solution that works well with all NATs, applications,
and network topologies. Another article explains many of the
available protocols for NAT traversal [14] in general. This sec-
tion describes the applicability of existing techniques from the
applications point of view.

RNT is required for protocols using in-band signaling (bun-
dled session applications). Therefore, one common approach
is to integrate RNT into these applications (e.g., the VoIP
client), to establish port bindings on the fly. One possibility is
the integration of a universal plug and play (UPnP) client.
Another option is to use ALGs that are integrated in the
NAT, interpreting in-band signaling and establishing map-

16

IEEE Network * September/October 2008

solomon
Highlight

Requires support at

Signaling messages

Service . Stream-
cateqo NAT traversal techniques independent
gory Service Requester NAT Service Requester RP STUN P
NAT with ALG X
RNT .
UPnF_’ (fo_r bundled session X X X X
applications)
UPnP (port forwarding) X X X X
Hole punching —
GSP independent filtering X X X X
Open data relay (e.g., RSIP) X X X X
Hole punching —
independent binding s s & i % g
UPnP X X X X X X
SPPS
Closed/open data relay
(e.g., TURN, Skype) X X X X X
Tunneling (e.g., over UDP) X X X X X
Hole punching —
restricted filtering A A A A A 2
NSIS NATFW NSLP X X X X X
SSP
Closed data relay (e.qg.,
TURN) X X X X X
Tunneling (e.g., over X X X X X

secure channel)

B Table 2. Service categories and their implications for automated NAT traversal; RP denotes rendezvous point.

pings accordingly. ALGs are not a general solution because
the NAT must implement the required logic for each proto-
col, and end-to-end security prohibits the interpretation of the
signaling by the NAT.

GSP depends on NAT traversal techniques that allow unre-
stricted access to a public end point. A control protocol can
be used to directly establish a port forwarding entry in the
mapping tables of the NAT, for instance, with UPnP [15].
Port forwarding entries created by UPnP are easy to maintain
and work independently from NAT behavior. However, UPnP
only works if the NAT is in the local network on the path to
the other end point. Thus, nested NATSs are not allowed, and
path changes break the connectivity.

Hole punching is an alternative if UPnP is not applicable
and works for NATs with an independent filtering strategy.
The mapping must be refreshed periodically, for instance, by
sending keep-alive packets. For NATs other than full-cone,
hole-punching for GSP cannot be used because the source
port of the request is unknown in advance.

makes no assumption about the accessibility of a cre-
ated mapping, thus all possible techniques are applicable. Dif-
ferent from GSP, hole-punching for SPPS works as long as
port prediction is possible. For NATs implementing restricted
filtering, pre-signaling helps to create the appropriate map-
ping because the five-tuple of the connection is exchanged.
Pre-signaling also enables the establishment of an UDP tun-
nel, allowing the encapsulation of unsupported protocols.
SPPS also can use UPnP to establish port forwarding entries
for one session.

SSP is an extension to SPPS that allows only authorized
hosts to allocate and to use a mapping. Protocols that autho-
rize requests and assume control over the middlebox, such as
middlebox communication (MIDCOM) [16] or the NAT/Fire-
wall Next Step in Signaling (NSIS) Layer Protocol [17] qualify
for SSP. The advantage of NSIS is that it can discover and
configure multiple middleboxes along the data path, thus sup-
porting complex scenarios with nested NATs and multipath
routing. However, if one NAT on the path does not support
the protocol, NSIS fails. Using NSIS and MIDCOM for SSP
requires restrictive rules that allow only authorized clients to
use the mapping, for instance, by opening pinholes for IP five-
tuples. UPnP is not useful for SSP because it forwards
inbound packets without considering the source transport
address. Hole punching can be used only with SSP if the NAT
implements a restricted filtering strategy. All cases discussed
previously rely on additional measures to prohibit IP spoofing.
The use of secure tunnels impedes IP spoofing and allows
secure NAT traversal, even for unsupported protocols (e.g.,
IPSec, SCTP, DCCP). SSP also can be achieved by using
traversal using relay NAT (TURN) with authentication,
authorization, and secure communication (e.g., via transport
layer security [TLS]).

ICE [9] is under standardization by the IETF and strives to
combine several techniques into a framework flexible enough
to work with all network topologies. Because ICE requires
both peers to have an ICE implementation running, it can be
seen as a technique for SPPS or SSP, depending on the acces-
sibility and the security policies of the public endpoint.

IEEE Network * September/October 2008

solomon
Replace Text

solomon
Replace Text
SPPS

solomon
Underline

Requester initiated

T

Support

Support at both ends at client

N

Secure Insecure
endpoint endpoint

&

NAT traversal request

/\

Support at service

Access to service

/\

Support at both ends

T

Secure Insecure
endpoint endpoint

W Figure 2. Decision tree for ANTS.

The same is true for solutions such as TURN [18]. TURN
is a promising candidate for SPPS, because it provides a relay
with a public transport address allowing the exchange of data
packets between a TURN client and a public host.

Why Unilateral Solutions Exist

Despite the great flexibility of SPPS and SSP, both categories
involve a number of assumptions that are not always satisfied.
The most important one is the requirement for both ends
(and sometimes also the infrastructure), to support compati-
ble versions of the NAT traversal framework. It remains to be
seen if the future will bring a sufficiently big deployment of
one framework on which to rely for arbitrary applications.
The chances are better within homogeneous problem domains,
like telecommunication, where such frameworks can be inte-
grated with the applications and be distributed in large num-
bers. For instance, the adoption of ICE is occurring mainly
within the VoIP/SIP community and focusing on VoIP specific
use cases. These drawbacks are the reason why RNT and GSP
as unilateral solutions for the NAT traversal problems exist. It
is easier to enhance an infrastructure under one responsibility
than to rely on a solution that requires a global deployment.
However, unilateral solutions are limited to the middle-

boxes in the given domain. They fail to provide solutions

to scenarios with nested NATs and depend on the net-

ing NAT traversal support. With the session manager, ANTS
can provide GSP and RNT directly. Whenever an application
is added and associated with GSP or RNT, the session manag-
er calls the NAT traversal logic and asks to allocate an appro-
priate mapping in the NAT. This also requires ANTS to have
sufficient knowledge about the applicability of the integrated
techniques regarding the service categories. For example,
UPnP cannot be used for SSP because it violates the idea of
an endpoint that is accessible only by authenticated hosts.

Figure 2 shows a decision tree that ANTS uses to establish
a mapping in the NAT. First, we distinguish between requester
initiated NAT traversal on the one hand and the access to a
service on the other hand. Then, we must know which ends
actually implement ANTS. If both hosts have the framework
running, pre-signaling is possible, which leads to a wide choice
of techniques depending on the security considerations of the
mapping. If only one end supports ANTS, only techniques
belonging to GSP or RNT are applicable.

Despite some unsolved issues such as the question of how
to connect legacy applications to ANTS (e.g., by using a
library or a traversal of UDP through NAT [TUN]-based
approach), the idea of a knowledge-based framework seems

work topology.

Coalescing Unilateral and Cooperative
Approaches for NAT Traversal

When investigating existing NAT traversal techniques, we
determined that none of them can be used in all scenar-
ios. For example, UPnP only supports globally accessible
end points, whereas ICE requires both hosts to run the
framework. In [19], we proposed a new framework that
aims toward providing an advanced NAT traversal service
(ANTS) supporting all four service categories. The con-
cept of ANTS is based on the idea of reusing previously
obtained knowledge about the topology of the network
and the capability of the NAT. A small component of
ANTS, the NAT tester, is responsible for gathering this
information and will be presented (together with some
test results) in the next section.

If a user decides that a particular application should be

S. cat. Prot. Condition Suc. rate
RNT UDP (UPNnP or HP-UDP) 90.27%
TCP (UPnP or HP-TCP) 77.84%
UDP (Full Cone and HP-UDP) 27.03%
GSP TCP (Full Cone and HP-TCP) 17.30%
UDP (UPnP or (Full Cone and HP-UDP)) 50.27%
TCP (UPnP or (Full Cone and HP-TCP)) 44.32%
UDP (HP-UDP) 88.65%
TCP (HP-TCP) 71.35%
SPPS TCP (HP-TCP or HP-UDP) 94.59%
UDP (UPnP or HP-UDP) 90.27%
TCP (UPnP or HP-TCP) 77.84%
TCP (UPnP or HP-TCP or HP-UDP) 95.14%
ssp UDP (Restricted NAT and HP-UDP) 48.65%
TCP (Restricted NAT and HP-TCP) 38.38%

reachable from the public Internet, he registers it at a ses-
sion manager that keeps track of all applications request-

B Table 3. Results of the field test: success rates of NAT traversal tech-
niques depending on service categories.

18 IEEE Network * September/October 2008

solomon
Highlight

to be the right answer. Thus once implemented, ANTS can
help many existing services by integrating several techniques
and making its choice based on knowledge about the NAT
and the requirements of the application.

Field Test on NAT Traversal

To prove that existing techniques can be adapted to our ser-
vice categories, we implemented a NAT tester that acts as a
cornerstone for our new framework. This section presents the
results of a field test investigating 185 NATS in the wild. For a
detailed description including all results, see our Web site:
http://nettest.net.in.tum.de.

The first test queries a public STUN server to determine
the type of the NAT. Afterward, the NAT tester performs the
following connection tests and tries to establish a connection
to the host behind the NAT: UPnP, hole punching, and con-
necting to a data relay (each for both protocols, UDP and
TCP) (Table 3).

We then adapted the test results to our work and evaluated
the success rates of the individual techniques regarding our
defined service categories. Table III shows the categories and
the conditions that must be met according to the considera-
tions made previously. For example, GSP requires the use of
UPnP or hole punching support in combination with a full-
cone NAT to make a service globally accessible. Therefore,
50.27 percent of our tested NATSs supported a direct connec-
tion for UDP and category GSP (44.32 percent for TCP). In
all other cases (the remaining percentages), an external relay
must be used to provide GSP.

For SPPS, which makes no security assumptions, we divided
our results into two categories. First we determined the suc-
cess rates without considering UPnP. With 88.65 percent of all
NATS, we were able to establish a direct connection to the
host behind the NAT (71.35 percent for TCP). This rate
increased slightly (for TCP to 77.84 percent) when UPnP was
an option. The highest success rate for TCP NAT traversal
(95.14 percent) was discovered when we also allowed the tun-
neling of TCP packets through UDP.

SSP allows only authorized hosts to create and to use a
mapping. Therefore, a suitable technique for SSP is hole
punching in combination with a NAT implementing a restrict-
ed filtering strategy. This was supported by 48.65 percent for
UDP and 38.38 percent for TCP.

The success rate for RNT depends on the effort that is
made for the specific protocol. For example, if we assume that
we can inspect each signaling packet on the application layer
thoroughly, we could adopt the results from SPPS to RNT. If
we would only modify the packets in a way that the internal
port is reachable by any client, the success rate of GSP would
apply to RNT. Finally, we did not measure the effect of NATSs
with integrated ALGs in this field test.

Conclusion

With the increasing popularity of P2P communication, the
NAT traversal problem has become more urgent than ever.
Existing solutions have the drawback of supporting only cer-
tain types of NATs and cannot be viewed as a general solu-
tion to the problem. When analyzing the NAT traversal
problem more thoroughly, we discovered that the question of
who supports the NAT traversal framework determines which
NAT traversal techniques are applicable. Therefore, we iden-
tified four NAT traversal service categories that differentiate

between support by service, client, and infrastructure and list-
ed applicable NAT traversal techniques for each category.
Our findings from a field test showed that there are a number
of prospective NAT traversal techniques that enable connec-
tivity for each NAT traversal service category. We emphasized
how to build upon this categorization to develop a knowledge-
based NAT traversal framework. Future frameworks that
aspire to support the typical connectivity scenarios of current
applications should support all four service categories.

References

[1] K. Egevang and P. Francis, “The IP Network Address Translator (NAT),” IETF
RFC 1631, May 1994.

[2] IETF, “Behavior Engineering for Hindrance Avoidance (behave);”
http:/ /www.ietf.org

[3] P. Srisuresh and M. Holdrege, “IP Network Address Translator (NAT) Termi-
nology and Considerations,” IETF RFC 2663, Aug. 1999.

[4] J. Rosenberg et al., “STUN: Simple Traversal of User Datagram Protocol (UDP)
through Network Address Translators (NATs),” IETF RFC 3489, Mar. 2003.

[5] E. F. Audet and C. Jennings, “NAT Behavioral Requirements for Unicast
UDP,” IETF RFC 4787, Jan. 2007.

[6] S. Guha and P. Francis, “Characterization and Measurement of TCP Traver-
sal through NATs and Firewalls,” Proc. ACM Internet Measurement Conf.,
Berkeley, CA, Oct. 2005.

[7]1 G. Huston, “Anatomy: A Look Inside Network Address Translators,” The
Internet Protocol J., vol. 7, 2004, pp. 2-32.

[8] M. Holdrege and P. Srisuresh, “Protocol Complications with the IP Network
Address Translator,” IETF RFC 3027, Jan. 2001.

[9] J. Rosenberg, “Interactive Connectivity Establishment (ICE): A Protocol for
Network Address Translator (NAT) Traversal for Offer/Answer Protocols,”
IETF Internet draft, work in progress, Oct. 2007.

[10] P. Francis, S. Guha, and Y. Takeda, “NUTSS: A SIP-based Approach to
UDP and TCP Network Connectivity,” Cornell Univ., Panasonic Commun.,
tech. rep., 2004.

[11] A. Biggadike et al., “NATBLASTER: Establishing TCP Connections between
Hosts behind NATs,” ACM SIGCOMM Asia Wksp., Beijing, China, 2005.
[12] J. Eppinger, “TCP Connections for P2P Applications — A Software
Approach to Solving the NAT Problem,” Carnegie Mellon Univ., Pittsburgh,

PA, tech. rep., 2005.

[13] B. Ford, P. Srisuresh, and D. Kegel, “Peer-to-Peer Communication across
Network Address Translation,” MIT, tech. rep., 2005.

[14] H. Khlifi, J. Gregoire, and J. Phillips, “VoIP and NAT/Firewalls: Issues, Traversal
Techniques, and a Real-World Solution,” IEEE Commun. Mag., July 2006.

[15] U. Forum, “Internet Gateway Device (IGD) Standardized Device Control
Protocol,” Nov. 2001.

[16] P. Srisuresh et al., “Middlebox Communication Architecture and Frame-
work,” [ETF RFC 3303, Aug. 2002.

[17] M. Stiemerling et al., “NAT/Firewall NSIS Signaling Layer Protocol (NSLP),”
IETF Internet draft, Feb. 2008.

[18] J. Rosenberg, R. Mahy, and P. Matthews, “Traversal Using Relays around
NAT (TURN),” IETF Internet draft, work in progress, June 2008.

[19] A. Miller, A. Klenk, and G. Carle, “On the Applicability of Knowledge-
Based NAT-Traversal for Future Home Networks,” Proc. IFIP Networking
2008, Springer, Singapore, May 2008.

Biographies

ANDREAS MULLER (mueller@net.in.tum.de) received his diploma degree in comput-
er science from the University of Tiibingen, Germany in 2007. Currently, he is a
research assistant and Ph.D. candidate at the Network Architecture and Services
Department at the Technical University of Munich. His research interests include
middleboxes, P2P systems, and autonomic networking.

ANDREAS KLENK (klenk@informatik.uni-tuebingen.de) earned his diploma degree
in computer science from Ulm University, Germany, in 2003. He is a Ph.D. can-
didate and research assistant at the University of Tubingen and works with Pro-
fessor Carle. He contributes to European research projects in the
telecommunication field. His research interests include negotiation and security in
autonomic systems.

GEORG CARLE (carle@net.in.tum.de) received a M.Sc. degree from Brunel Univer-
sity London in 1989, a diploma degree in electrical engineering from the Univer-
sity of Stuttgart in 1992, and a doctoral degree from the faculty of computer
science, University of Karlsruhe in 1996. He is a full professor in computer sci-
ence at the Technical University of Munich, where he is chair of the Department
of Network Architecture and Services. Among the focal interests of his research
are Internet technology and mobile communication in combination with security.

IEEE Network * September/October 2008

solomon
Highlight

solomon
Highlight

