
�

Chapter 3 Loaders and Linkers
-- Basic Loader Functions

�������	
��
����� �

Three processes to run an object program

� Loading
� Brings object program into memory

� Relocation
� Modifies the object program so that it can be loaded at an address

different from the location originally specified

� Linking
� Combines two or more separate object programs and supplies

information needed to allow cross-references.

� “Loader and linker” may be a single system program
� Loader: loading and relocation

� Linker: linking ����

�������	
��
����� �

Absolute loader

� No linking and relocation needed
� Records in object program perform

� Header record
� Check the Header record for program name,
starting address, and length (available
memory)

� Text record
� Bring the object program contained in the
Text record to the indicated address

� End record
� Transfer control to the address specified
in the End record

�������	
��
����� �

Loading an absolute program
Figure 3.1, pp. 125

�� �� � � �� � � � � �� �� �� � �� � � �� � � � � �� �� ��� �� � � �� � � � � �� �� �� � �� � � �� � � � � �� �� �

	 � �� � � ��
 � �� �� � � � �� � � �� � � � � � �� � � �� �� � � � � � � � � � � � � � �� � � � �� � �� � �	 � �� � � ��
 � �� �� � � � �� � � �� � � � � � �� � � �� �� � � � � � � � � � � � � � �� � � � �� � �� � �	 � �� � � ��
 � �� �� � � � �� � � �� � � � � � �� � � �� �� � � � � � � � � � � � � � �� � � � �� � �� � �	 � �� � � ��
 � �� �� � � � �� � � �� � � � � � �� � � �� �� � � � � � � � � � � � � � �� � � � �� � �� � � �� � ���� � ���� � ���� � ��

	 � �� ��
� � �� � �� � � � � � � � � � � � �� � � � � � � �� � � � � � � � � � � � � � �	 � �� ��
� � �� � �� � � � � � � � � � � � �� � � � � � � �� � � � � � � � � � � � � � �	 � �� ��
� � �� � �� � � � � � � � � � � � �� � � � � � � �� � � � � � � � � � � � � � �	 � �� ��
� � �� � �� � � � � � � � � � � � �� � � � � � � �� � � � � � � � � � � � � � �

	 � � � � � � �
 � �� �� � � �� �� �
 � � � � � � � � �� � � � � � � � � �� � � � � � � � � � � �� � �� � � �
 �	 � � � � � � �
 � �� �� � � �� �� �
 � � � � � � � � �� � � � � � � � � �� � � � � � � � � � � �� � �� � � �
 �	 � � � � � � �
 � �� �� � � �� �� �
 � � � � � � � � �� � � � � � � � � �� � � � � � � � � � � �� � �� � � �
 �	 � � � � � � �
 � �� �� � � �� �� �
 � � � � � � � � �� � � � � � � � � �� � � � � � � � � � � �� � �� � � �
 � � �� � � �� � � �� � � �� �

	 � � � � � � � � � �� �� � �� � � � �� � � �� � � � � �� � � �
 � � �� � � � � � � � � � � � � � � � � �� � � � � � �	 � � � � � � � � � �� �� � �� � � � �� � � �� � � � � �� � � �
 � � �� � � � � � � � � � � � � � � � � �� � � � � � �	 � � � � � � � � � �� �� � �� � � � �� � � �� � � � � �� � � �
 � � �� � � � � � � � � � � � � � � � � �� � � � � � �	 � � � � � � � � � �� �� � �� � � � �� � � �� � � � � �� � � �
 � � �� � � � � � � � � � � � � � � � � �� � � � � � � �� ��

	 � � � �� � �� � � � � � �� � � � � � �	 � � � �� � �� � � � � � �� � � � � � �	 � � � �� � �� � � � � � �� � � � � � �	 � � � �� � �� � � � � � �� � � � � � �

 � �� � � �
 � �� � � �
 � �� � � �
 � �� � � �

(a) Object program

^ ^ ^
^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^

^ ^ ^ ^ ^ ^ ^ ^ ^

^

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^

^ ^ ^ ^ ^

�������	
��
����� �

Loading an absolute program
Figure 3.1, pp. 125

.

.
.
.

.

.
.
.

.

.

001030E0
20575490
00F10010
39DC2079
XXXXXXXX
XXXXXXXX

XX041030
28103030
10364C00
20645090
0005XXXX
XXXXXXXX

XXXXXXXX
3FD8205D
38203F10
E0207930
20644C00
XXXXXXXX

XXXXXXXX
205D3020
392C205E
00041030
2C103638
XXXXXXXX

2030
2040
2050
2060
2070
2080

.

.
.
.

.

.
.
.

.

.

XXXXXXXX
30101548
102D0C10
46000003
XXXXXXXX

XXXXXXXX
36281030
0C103900
0000454F
XXXXXXXX

XXXXXXXX
20390010
0300102A
0810334C
XXXXXXXX

XXXXXXXX
14103348
20613C10
36482061
000000XX

0FF0
1000
1010
1020
1030

.

.
.
.

.

.
.
.

.

.

XXXXXXXX
XXXXXXXX

XXXXXXXX
XXXXXXXX

XXXXXXXX
XXXXXXXX

XXXXXXXX
XXXXXXXX

0000
0010

Contents
Memory
address

��������
���
�

�������	
��
����� �

Algorithm for an absolute loader
Figure 3.2, pp. 126

Most machines store object codes in binary form
• Less space and loading time
• Not good for reading

begin
read Header record
verify program name and length
read first Text record
while record type != ‘E’ do

begin
{if object code is in character form, convert into
internal representation}

move object code to specified location in memory
read next object program record

end
jump to address specified in End record

end

Algorithm for an absolute loader

�������	
��
����� �

Object Code Representation

� Character form (e.g. Figure 3.1 (a))
� Each byte of assembled code is given using its

hexadecimal representation in character form

� Easy to read by human beings

� Binary form
� Each byte of object code is stored as a single byte

� Most machine store object programs in a binary form

�������	
��
����� �

A simple bootstrap loader

� SIC bootstrap loader
� The bootstrap itself begins at address 0

� It loads the OS starting address 0x80

� No header record or control
information, the object code is
consecutive bytes of memory

� After load the OS, the control is
transferred to the instruction at address
80.

� Bootstrap Loader (usually in ROM)
� When a computer is first tuned on or restarted, a special type of

absolute loader, the bootstrap loader loads the first program (usually
O.S.) to be run into memory

Bootstrap
Loader

O.S.

O.S.

“F1” device

�

��

�������	
��
����� �

Algorithm for SIC/XE bootstrap loader

X ← 0x80 (the address of the next memory location to be loaded)
Loop until end of input

A ← GETC (and convert from ASCII character code to the
hexadecimal digit)

save the value in the high-order 4 bits of S
A ← GETC
combine the value to form one byte A ← (A+S)
(X) ← (A) (store one char.)
X ← X + 1

End of loop

GETC A ← read one character from device F1
if (A = 0x04) then jump to 0x80
if A<48 then goto GETC
A ← A-48 (0x30)
if A<10 then return
A ← A-7
return

ASCII value of
0~9 : 0x30~39
A~F : 0x41~46

�������	
��
����� ��

Bootstrap loader for SIC/XE
-- Figure 3.3, pp. 128

CLEAR REGISTER A TO ZERO
INITIALIZE REGISTER X TO HEX 80
READ HEX DIGIT FROM PROGRAM BEING LOADED
SAVE IN REGISTER S
MOVE TO HIGH-ORDER 4 BITS OF BYTE
GET NEXT HEX DIGIT
COMBINE DIGITS TO FORM ONE BYTE
STORE AT ADDRESS IN REGISTER X
ADD 1 TO MEMORY ADDRESS BEING LOADED
LOOP UNTIL END OF INPUT IS REACHED

#A
#128
#GETC
#A,S
#S,4
#GETC
#S,A
#0,X
#X,X
#LOOP

CLEAR
LDX
JSUB
RMO
SHIFTL
JSUB
ADDR
STCH
TIXR
J

LOOP

.

. THIS BOOTSTRAP READS OBJECT CODE FROM DEVICE F1 AND ENTERS IT

. INTO MEMORY STARTING AT ADDRESS 80 (HEXADECIMAL). AFTER ALL OF

. THE CODE FROM DEVF1 HAS BEEN SEEN ENTERED INTO MEMORY, THE

. BOOTSTRAP EXECUTES A JUMP TO ADDRESS 80 TO BEGIN EXECUTION OF

. THE PROGRAM JUST LOADED. REGISTER X CONTAINS THE NEXT ADDRESS

. TO BE LOADED.

.

BOOTSTRAP LOADER FOR SIC/XE#0STARTBOOT

�������	
��
����� ��

Bootstrap loader for SIC/XE
-- Figure 3.3, pp. 128

TEST INPUT DEVICE
LOOP UNTIL READY
READ CHARACTER
IF CHARACTER IS HEX 04 (END OF FILE),

JUMP TO START OF PROGRAM JUST LOADED
COMPARE TO HEX 30 (CHARACTER ‘0’)
SKIP HCARACTERS LESS THAN ‘0’
SUBTRACT HEX 30 FROM ASCII CODE
IF RESULT IS LESS THAN 10, CONVERSION IS

COMPLETE. OTHERWISE, SUBTRACT 7 MORE
(FOR HEX DIGITS ‘A’ THROUGH ‘F’)

RETURN TO CALLER
CODE FOR INPUT DEVICE

#INPUT
#GETC
#INPUT
#4
#80
#48
#GETC
#48
#10
#RETURN
#7

#X’F1’
#LOOP

TD
JEQ
RD
COMP
JEQ
COMP
JLT
SUB
COMP
JLT
SUB
RSUB
BYTE
END

GETC

RETURN
INPUT

.

. SUBROUTINE TO READ ONE CHARACTER FROM INPUT DEVICE AND

. CONVERT IT FROM ASCII CODE TO HEXADECIMAL DIGIT VALUE. THE

. CONVERTED DIGIT VALUE IS RETURNED IN REGISTER A. WHEN AN

. END-OF-FILE IS READ, CONTROL IS TRANSFERRED TO THE STARTING

. ADDRESS (HEX 80).

.

