
A Network Monitoring System with a Peer-to-Peer Architecture

Paulo Salvador, Rui Valadas

University of Aveiro / Institute of Telecommunications Aveiro
E-mail:salvador@av.it.pt; rv@det.ua.pt

Abstract

The ever growing complexity of modern data networks
requires versatile and scalable network monitoring archi-
tectures. In this paper we propose a network monitoring
system with a peer-to-peer (P2P) architecture, allowing for
high tolerance to failures and distributed storage of mea-
sured data. We describe the main features of the architec-
ture, namely the system elements and its hierarchical orga-
nization, the protocols for handshaking, promoting and de-
motion of system elements, and distributing control infor-
mation, the algorithm for system startup, addition of new
elements and failure recovery, and the procedures for stor-
ing, replicating, searching and downloading measurement
data. The proposed architecture is shown to be flexible in
adapting to various network conditions and available re-
sources.
Keywords: Traffic monitoring, peer-to-peer, distributed
control, distributed storage, distributed access, probing.

1 Introduction

The complexity of data networks is growing very fast
due to the diversity of technologies, applications and user
behaviors. In such environments, a complete and updated
knowledge of the network status is of fundamental impor-
tance for network administrators. Traffic monitoring sys-
tems provide administrators with a tool to detect and re-
spond to network events or behaviors that can have a sig-
nificant impact on the network performance.

Existing traffic monitoring systems either rely on a
single probe [1, 2, 3, 4] or in a centralized architecture
where a set of probes are controlled by a single manager
[5, 6, 7, 8, 9]. The single probe system only monitors the
traffic at one location and, therefore, is not flexible enough
for medium and large size networks. The centralized archi-
tecture is able to provide an accurate view of the network
status. However, it relies on a single manager, which makes
it vulnerable to failures. Moreover, it stores measured data
at a single collector, which may consume significant band-
width when downloading data from probes.

In this paper we propose a versatile, scalable and eas-
ily manageable traffic monitoring system based on a peer-
to-peer (P2P) hierarchical architecture. The adoption of a
P2P architecture allows high tolerance to failures and dis-
tributed storage of measured data. This architecture is also
advantageous for traffic monitoring in wide area network
environments. Moreover, access and querying of measured
data can be performed using traditional P2P file sharing
schemes.

The system consists of two main entities: the probe
and the client. The probe performs the measurements and
stores the results. The client is the interface between the
monitoring system and the user. It is used to configure the
system and to retrieve the measured data. A client can con-
nect to any probe and use this connection to configure mea-
surements and retrieve measured data on any other probe.
Thus access to the monitoring system is completely dis-
tributed. The addition of a new probe to the monitoring
system is transparent: the system automatically detects and
integrates a new probe.

To improve the scalability of the system, the probes
are organized in groups, and each group is responsible
for monitoring a particular network area. Within a group,
one or more probes, called super-probes, are responsible
for controlling other probes and communicating with other
groups.

There are two types of measured data files: light data
and heavy data files. The light files store the monitoring
system parameters and summary statistics of the traffic,
and are broadcasted to all probes. They provide a coarse,
but updated and fully available, view of the network sta-
tus. The heavy files store the results of all scheduled mea-
surements, and can include detailed packet or flow infor-
mation, and statistics of packet delays and losses measured
over a period of time, obtained through active [5, 10] or
passive [6] monitoring techniques. These files are stored
at the probe that created them and are possibly replicated
at other probes. The replication improves the system re-
liability, since data can be retrieved even if the probe that
made the measurements becomes inactive or inaccessible.
The search and retrieval methodologies for measured data
stored at the probes are similar to the ones used in P2P file



sharing applications.
Peer-to-peer based measurement systems have been pro-

posed by Srinivasan and Zegura [11] and by Liuet al. [12].
Both systems have rudimentary storage and search capa-
bilities, which makes it difficult to handle large data files
and restricts the type of measurements that can be carried
out. Moreover, the architectures are not hierarchical and,
therefore, do not scale well with the number of measuring
probes.

The paper is organized as follows. Section 2 gives a de-
tailed view of the proposed system architecture, namely the
system elements and its hierarchical organization, the pro-
tocols for handshaking, promoting probes, demoting super-
probes and distributing control information, the algorithm
for system startup, addition of new elements and failure re-
covery, and the procedures for storing, replicating, search-
ing and downloading measurement data. Finally, in Section
3 we present our conclusions.

2 System architecture

2.1 System elements and hierarchy

Given that the monitoring elements may have different
computational resources (e.g. processing capabilities, stor-
age space or network connections) and the availability of
those resources may vary drastically over time, we propose
an hierarchical architecture for the monitoring system simi-
lar to Gnutella 0.6 [13, 14]. In the first versions of Gnutella
the nodes were considered identical and connected to each
other randomly. In order to accommodate elements with
distinct characteristics and increase the network scalabil-
ity, version 0.6 of Gnutella introduced a more structured
network where the elements can operate in ultrapeer or leaf
mode [14]. A leaf establishes only connections to ultra-
peers which work as gateways to the Gnutella network.

In the proposed monitoring system, probes in the same
network area are associated in groups. A probe can also
operate in super-probe mode. A probe performs measure-
ment operations and stores measurement results. When in
super-probe mode is also responsible for managing the set
of probes connected to it and to establish interconnections
with the other super-probes. A monitoring element can al-
ternate between the two modes in order to adjust to differ-
ent network conditions and resource’s availability. In Fig-
ure 1 we represent the hierarchical relationship between the
system elements. The communication between groups is
performed by the super-probes. A super-probe connects to
all other super-probes in the monitoring system (Figure 2).

The other system element is the client which is the in-
terface between the monitoring system and the user. The
client is used to configure the system (e.g. schedule mea-
surements, change the mode of a probe and update the de-

�����������	
�


�����������	��



����


����


����

������

������

�����	


�����������	��


�����	�
�����	�

�����������

���

Figure 1. System hierarchy.

�����������

	
	

�����������

�
	

�����������

�
	

�����������

�
�


����	


�����

�����

Figure 2. Groups connections.

fault probe list) via the COMMAND message and to re-
trieve the measured data. A client can connect to any probe
and use this connection to configure measurements and re-
trieve measured data on any network probe.

2.2 Handshaking

The handshaking between the elements of the monitor-
ing system (probe or super-probe) is performed by estab-
lishing a TCP connection and exchanging a set of control
messages. The handshaking procedure differs from the one
implemented by Gnutella. In Gnutella networks, the hand-
shaking is performed initially with two ASCII messages
(GNUTELLA CONNECT and GNUTELLA OK) to assure
compatibility between different versions, followed by bi-
nary control messages (PING and PONG). We note that



in order to establish a connection over a reliable channel
such as the one provided by TCP only two messages are
required. Thus, in the proposed system we suppress the
ASCII messages in order to simplify the process and re-
duce the number of exchanged messages. The handshak-
ing is performed using only an adaptation of the Gnutella
binary messages PING and PONG.

A monitoring element that initializes the handshaking
with another element, sends a PING message requesting a
connection, over the TCP channel previously established,
which differs from the Gnuttela PING. It includes a field
indicating the mode (probe or super-probe) of the element
in question. The response to a PING is a PONG message,
which also differs from the Gnuttela PONG. It includes the
mode of the element in question, a flag indicating the ac-
ceptance or refusal of the connection request, the address
of another super-probe (if known) and, in case of an ac-
cepted connection, includes the light data file. The usage
of this messages for system startup, probe addition or fail-
ure recovery will be detailed in subsection 2.5.

A client can connect to any probe (or super-probe) using
the same handshaking process used between probes.

2.3 Probe promotion and super-probe demotion

A super-probe can promote automatically a probe to
super-probe if, according to a predetermined criterion, it
is overloaded. To determine the overload condition, the
probe takes into account the mean CPU usage, the mean
memory usage, the free storage space, the number of con-
nect probes and mean available bandwidth at the network
interface. When a super-probe becomes overloaded, it tries
first to distribute its probes to other super-probes with avail-
able resources; if not possible, promotes one of its probes
to the super-probe mode and assigns some of the probes to
it. A super-probe can demote itself to probe mode, when it
is the least loaded super-probe and perceives that there are
enough available resources in other super-probes. To start
the promotion and reassignment process the super-probe
sends a PONG message to the future super-probe with the
promotion flag activated. Then the super-probe sends
to each of the probes to be reassigned, a PONG message
with thebye flag activated and with the address of the new
super-probe. It is now up to the reassigned probes to initi-
ate the handshaking with the new super-probe. In Figure 3
we show an example of the probe promotion and reassign-
ment process. Using this process the system always accepts
new elements and distributes its load such that the number
of super-probes is minimized but the system performance
is not degraded.

��������	
 ��������	�


����	������� 
����	�������

��������	

��������	�


����	�������

�������

�

�

�










�

Figure 3. Example of probe promotion to
super-probe, when probe 7 becomes super-
probe 2. ➀ PONG message with promotion
flag active, ➁ PONG message with bye flag
active and with the address of super-probe 2
(probe 7) and ➂ PING/PONG handshaking.

2.4 System information distribution

The monitoring system parameters and summary statis-
tics of the measured traffic, which comprises the so-called
light data file, are broadcasted to all probes within a group.

All PING messages sent by a probe (or super-probe) in-
clude the available resources of its sender. The available
resources reported are the CPU clock, memory, mean CPU
usage, mean memory usage, free storage space, mean avail-
able bandwidth at the network interface, and number of al-
lowed probe connections (in the case of super-probes).

The light data file (in binary format) is broadcasted us-
ing the data field of PONG messages. The informations
included in a light data file are: the addresses of all super-
probes and their group IDs, the addresses of the probes
within the group to which the light data file belongs and its
group ID, the available resources in each probe or super-
probe within the group and the summary traffic statistics
measured within the group. The summary statistics of the
traffic include the average probe to probe delays and aver-
age throughput at each probe interface.

The light data file is identified by an unique digital fin-
gerprint (SHA1 hash value). The SHA1 (Secure Hash Al-
gorithm) [15] is also used in Gnutella 0.6 networks to iden-
tify identical files [14].



2.5 System startup, probe addition and failure
recovery

In Figure 4 we depict the flow diagram of the algorithm
used to manage the monitoring system. This algorithm ap-
plies at system startup, when a new probe must be added
to the system and after a system failure. The algorithm de-
scribes the necessary actions of an individual probe to en-
ter an already established system or to initiate a system. In
both cases the unconnected probe requires a list of poten-
tial super-probes. At startup this list must be provided by
the system administrator in the so-called default light data
file and when recovering from a system failure the probe
should use the last light data file received.

A probe can be in super-probe mode when joining the
network, if it was in that mode before a system failure
or when set administratively. The joining element (probe
or super-probe) starts by identifying the potential super-
probes in its group and tries to establish a connection with
the first one in the list. If the TCP connection was suc-
cessful, the joining element sends a PING message; other-
wise it tries another super-probe in the list. After sending
a PING message, it will wait for a response; if no response
is received within a predefined timeout it will retransmit
the PING message a number of times. When the maxi-
mum number of attempts is reached, the joining element
resets the TCP connection and tries the next probe in list.
There are two possible responses to a PING: a PONG from
a probe or a PONG from a super-probe. If the joining ele-
ment receives a PONG from a probe, verifies if the message
contains the address of a super-probe. If it does, it resets
the TCP connection and tries to establish a connection with
that super-probe; otherwise it will try the next probe in list.
If the joining element is a probe and the PONG response
is from a super-probe, it reads the light data file from the
PONG message, sends to the super-probe the list of avail-
able heavy data files using the FILE message and starts to
interact with the network. Otherwise, if the joining ele-
ment is a super-probe and receives a PONG message from
a super-probe, both elements decide whether or not they
maintain themselves in the super-probe mode, using the in-
formation on available resources included in the PING and
PONG message. The probes use a unique criterion known
to all probes to make this decision. In case of demotion,
the super-probe will first reassign its probes to other super-
probes; it will send a PONG message to each of the probes
that need to be reassigned with thebye flag activated and
with the address of the new super-probe. When the joining
element is a probe and has tried all address in its list with-
out success, it promotes itself to super-probe and starts the
procedure all over again. Also, when the joining element
is a super-probe and has no more addresses to try, stops the
joining process, waits connections from the probes of its

�����������	
���

�
����	
��	��

�
��������	���

������

���	�


����

��

���	�
�

���

�
�����	���

�
���

��
�������

�������

�����
��� ���
�
��	��

����������

��

���	�


�������
����

�
����	
��	��

������ 	����

!���

��

��

����
�

"��

"��

�#��
$�
����

�����%	��� 	����

!���

��
������#��
$�
����

�����&�	���������&��

������	�����	��

����������

��

���	�


�
���

����

"��

'����#��
$

�
�������
���

(	����#��
$

�
�������
����

)#���
����	�
�

����#��
$�
���

"��

��

����#��
$

�
����

"��

��

���
�

��

"������#��
$

�
����

!���
�	
���	��	��

%	���
���	
�

�#��
$�
���

����#��
$

�
����

�����	
�������

��

������

�
������������

�#��
$�
���

��

"��

*�����	���	
��
$

�
�#���

��

���	�
�

����

Figure 4. System startup and recovery.

group and starts establishing inter-group connections.

2.6 Results storing and retrieval

2.6.1 Data storage and replication

The system uses a distributed data archive system. The
probes store locally the results of their measurements in
the heavy data files but also replicate these files in some
other probes. This approach stands between two major
archive philosophies: centralized and completely distrib-
uted. Replicating the data in some probes guarantees that
data remains available even if the probe that made the mea-
surements becomes inactive. Having multiple data sources
also allows a faster and more reliable data retrieval using
P2P file sharing techniques namely the Partial File Sharing
Protocol [14].

The proposed system also implements the Gnutella 0.6
protocol meta-data approved extension [14, 16], where the
data files are assigned a set of meta-data tags. The meta-
data tags associated with the heavy data files allow the
user to search for a particular measured data. The meta-
data tags used in the heavy data files are:<NAME>,



<TYPE>, <DATE>, <ADDRESS1>, <ADDRESS2>,
<M PROBE> , <GROUPID>, <FILE HASH> and
<OBS>. The <NAME> tag defines the file name and
the <TYPE> tag the type of measurement (i.e. pas-
sive measured delay, active measured losses, through-
put, ...). The<DATE> tag records the measurement
date. The<ADDRESS1> and<ADDRESS2> tags are
used to identify the measurement location. For exam-
ple, tag<ADDRESS1> can be used to identify the ori-
gin and tag<ADDRESS2> the destination in one-way de-
lay measurements [10]; or<ADDRESS1> can be used
to identify the interface address where a passive through-
put measurement is carried out. The<M PROBE> and
<GROUPID> define respectively the address and the
measurement group of the probe that performed the mea-
surement. The<FILE HASH> tag defines the file SHA1
hash. The<OBS> tag is reserved to any comment or ad-
ditional information provided by the system administrator.
A probe must notify its super-probe when a new heavy data
file is created, changed or deleted. This process is carried
out using the FILE message.

The data replication process is depicted in Figure 5. A
probe, after the end of a particular measurement, gener-
ates an heavy data file that is stored locally and notifies its
super-probe (step 1). The super-probe can then (immedi-
ately or not) send a REPLICATION message to the probe
indicating one (or more) locations for storing the data (step
2). Afterwards, the probe opens a TCP connection to each
location and transfers the heavy data file (step 3). The des-
tination probe, as soon it receives the replica, signals the
super-probe acknowledging that the new replica is avail-
able for download (step 4). The number of replicas must
be related to the available storage space. In an extreme sit-
uation, when the system detects that it has no longer any
storage space available in the super-probes and/or probes
attached, it deletes some of the replicas assuring that at
least one copy of each data file remains in the system. This
process is controlled by the super-probe, which sends a
FILE message to the probes indicating the delete order and
the particular file to be deleted. The super-probe must start
the replica elimination by the files that have more replicas.
The system administrator must receive an e-mail alerting
him of the event. A probe must signal the super-probe when
its storage space becomes lower than a specified threshold
using a PING message with theout of space flag ac-
tive, to which the super-probe should respond with an order
to delete some of the probe data replicas.

2.6.2 Results search

The heavy data files stored within the system can be
searched using a P2P architecture approach, specifically
the one used in Gnutella 0.6 [14]. A client connected to

�����������

	����
� 	����
�

�

�




�

Figure 5. Heavy data replication process: ➀
new data available, ➁ locations to replica
data, ➂ data replication and ➃ new replica
available.

��������	

�����

Figure 6. Data query.

an element of a particular group can perform global and lo-
cal searches. A global search is performed in all groups of
the monitoring system while a local search is restricted to
the group where the client is attached.

The client initiates a search by ending a QUERY mes-
sage to its probe. The QUERY message will then be broad-
casted to super-probes. In case of a global search the
QUERY message is sent to all super-probes of the moni-
toring system. Each super-probe has a list of all heavy data
files stored in its probes. When a super-probe receives a
QUERY message with a file descriptor matching one (or
more) of its heavy data files, it responds with a QUERY-
HIT message. The QUERYHIT message includes, for each
heavy data file, the address of the probe where it is located
and its meta-tags. In Figure 6 we give an example of a
heavy data file search.

2.6.3 Data download

The data download is performed directly between the client
and the probes where the files are stored using HTTP. This



download can be made from multiple sources resorting to
the Partial File Sharing Protocol. The Partial File Sharing
Protocol is used by the Gnutella v0.6 [14], BitTorrent [17]
and EDonkey2000 [18]. This protocol prevents file corrup-
tion as data is transferred over the system. Each data seg-
ment has its own hash. When an individual segment has fin-
ished downloading, it is rehashed and checked against the
reported hash value from the host. If the hashes differ, the
downloaded segment is discarded and the client downloads
again that segment. This protocol was chosen because it
greatly enhances file sharing speed and availability.

In addition to the Partial File Sharing Protocol, the
Gnutella 0.6 link compression extension [14] can be used.
This methodology can reduce the amount of information
transmitted and additional load in the network, but also in-
creases the computational requirements in the probes. This
feature is optional and should be activated only when there
is available processing power at the probes.

2.7 System Messages Format

The system has a set of control messages: PING,
PONG, QUERY, QUERYHIT, COMMAND, FILE and
REPLICATION. All messages have a common header with
4 bytes . The first byte of the message header is used to de-
fine the type of message:

• 0x00 : PING
• 0x01 : PONG
• 0x80 : QUERY
• 0x81 : QUERYHIT
• 0x20 : COMMAND
• 0x30 : FILE
• 0x31 : REPLICATION

The first two bits of the second byte header (md) are used
to code the type of the system element that is sending the
message: 00 for probe, 01 for super-probe and 10 for client.
The remaining 6 bits of the header second byte are used as
control flags:

• Connection accepted : Used to acknowledge a
connection acceptance

• Bye : Used by super-probes to disconnect probes
(PONG message only)

• Promotion : Used by super-probes to promote
probes (PONG message only)

• Light data present : Signals that the message
contains light data (PONG message only)

• Out of space: Used by probes to signal the lack
of available storage space

• Super-probe address present : Signals
that the message contains a super-probe address
(PONG message only)

���� �� ��	
� 
�
�����
� � �� �� ��

�������
�	
����	�����������

���
�����������

	�
�� !"���	
� 	�
���������	
�

 !"���
�#���$%�

	���	
��	�	&�	'���'	(�)&��*��+'���

(��'���
��	�	&�	'�����
'���
((���&
(�

Figure 7. PING message format.

The last 2 bytes of the header are used to identify the mea-
surement group of the message sender.

The PING message format is depicted in Figure 7. Ad-
ditionally to the common header the PING message has 7
fields used to advertise the resources available at the sender.

The PONG message (Figure 8) has a field to broadcast
the address of the super-probe. The SHA1 field is used
to identify the specific light data file broadcasted. The re-
maining message fields are used to transmit the light data
itself. If no light data is being broadcasted the data field
length value should be zero.

���� �� ��	
�

�	�	��
���


�������
� � �� �� ��

�	�	��
�������
��

������������	������

�� ���

����	�	��
��

Figure 8. PONG message format.

The QUERY message has only two additional fields, the
search block size and the search block, in which it is pos-
sible to transmit the querying parameters, specifically the
meta-tag values (Figure 9).

���� �� ��	
�

��	�
�����
�


�������
� � �� �� ��

��	�
�����
������

Figure 9. QUERY message format.

The first additional field of the QUERYHIT message
(Figure 10) is the number of query hits. The QUERYHIT
message contains as many result blocks as the number of
hits. Each result block consists of the IP address of the file
source, the size of the file meta-data descriptor and the file
descriptor.

The COMMAND message (Figure 11) has only two
fields, the command size and the command. The command
is transmitted in ASCII format according to predetermined
rules. The command should include the requested action
and the action parameters.

The FILE message (Figure 12) includes a field indicat-
ing the number of file descriptors and the respective meta-



���� �� ��	
�

����
�
���	��	�	


����
��
� � �� �� ��

������
��
����

��
	������
�

���	��	�	
���� 
�
��!�

����
�
���	��	�	

��
	������
�

���	��	�	
���� 
�
��!�

Figure 10. QUERYHIT message format.

���� �� ��	
�

�
��	��������


�
�����
� � �� �� ��

�
��	������
�������

Figure 11. COMMAND message format.

data file descriptors. The FILE message control fields are
used to determine the action to be performed with each file
descriptor, and can have the following values:

• 0x00 : New
• 0x01 : Deleted
• 0x02 : Changed
• 0x10 : Delete

The New, Changed and Deleted values are used by probes
to signal the super-probe of changes in its heavy data file
archive. The Delete value is used by super-probes to signal
the deletion of a particular heavy data file.

���� �� ��	
�

����
�
���	��	�	


����
��
� � �� �� ��

���	��	�	
�����
�
���� �������
�

������
��
����
�����������

����
�
���	��	�	

���	��	�	
�����
�
���� �������
�

Figure 12. FILE message format.

The REPLICATION message (Figure 13) has a field
with the meta-data that describes the file to be replicated,
fields indicating the number of probes where the file should
be replicated and their IP addresses, and a field (type of
transference) indicating the protocol to be used in the file
transfer (e.g. HTTP or FTP).

3 Conclusion

In this paper we proposed a network monitoring system
with a peer-to-peer (P2P) architecture, allowing for high
tolerance to failures and distributed storage of measured
data. We have described the main features of the architec-
ture, namely the system elements and its hierarchical or-
ganization, the protocols for handshaking and distributing

���� �� ��	
�

����
���	��	�	


����
��
� � �� �� ��

������
��
��
	�������

��
	������
�

���	��	�	
�����
�� �

����
��
��	���������

��
	������
�

Figure 13. REPLICATION message format.

control information, the algorithm for system startup, ad-
dition of new elements and failure recovery, and the proce-
dures for storing, replicating, searching and downloading
measurement data. The proposed architecture was shown
to be flexible in adapting to various network conditions and
available resources.

Acknowledgments

This research was supported by Fundação para a Cîencia
e a Tecnologia, project POSI/EIA/60061/2004, and Euro-
pean Commission, Network of Excellence EuroNGI (De-
sign and Engineering of the Next Generation Internet).

References

[1] “TCPdump,” http://www.tcpdump.org/.

[2] “Ethereal - A Network Protocol Analyzer,”
http://www.ethereal.com/.

[3] “NTOP - Network TOP,” http://www.ntop.org/.

[4] “MRTG - Multi Router Traffic Grapher,”
http://mrtg.hdl.com/.

[5] S. Shalunov and B. Teitelbaum, “RFC 3763 - One-
way Active Measurement Protocol (OWAMP) Re-
quirements,” .

[6] J. Quittek, T. Zseby, B. Claise, and S. Zander, “RFC
3917 - Requirements for IP Flow Information Export
(IPFIX),” .

[7] S. Waldbusser, “RFC 1757 - Remote Network Moni-
toring Management Information Base,” .

[8] Inc. NetScout System, “RMON, RMON2, and Be-
yond,” .

[9] “Network Monitoring Tools,”
http://www.slac.stanford.edu/xorg/nmtf/nmtf-
tools.html/.

[10] H. Veiga, T. Pinho, J. L. Oliveira, R. Valadas, P. Sal-
vador, and A. Nogueira, “Active traffic monitoring for
heterogeneous environments,”Proceedings of 4th In-
ternational Conference on Networking (ICN05), Re-
union Island, vol. 2005, April.



[11] S. Srinivasan and E. Zegura, “Network measurement
as a cooperative enterprise,”Lecture Notes In Com-
puter Science, vol. 2429, pp. 166–177, March 2002.

[12] W. Liu, R. Boutaba, and J. W. Hong, “pMeasure: A
tool for measuring the internet,” inProceedings of the
2nd Workshop on End-to-End Monitoring Techniques
and Services (E2EMON), October 2004.

[13] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham,
and S. Shenker, “Making Gnutella-like P2P systems
scalable,” inProceedings of ACM SIGCOMM 2003,
April 2003.

[14] “Rfc-gnutella 0.6,” http://rfc-
gnutella.sourceforge.net/.

[15] “Secure hash standard,” Federal Information Process-
ing Standards Publication 180-1, April 1995.

[16] S. Thadani, “Meta information searches on the
Gnutella network,” LimeWire LLC, 2001.

[17] “BitTorrent,” http://bittorrent.com/.

[18] “eDonkey2000,” http://www.edonkey2000.com/.


