
IEEE Communications Surveys & Tutorials • Second Quarter 20052

ommunication network metrology is the science of
measuring network performance. It is a new research
area for packet-switched networks. The first significant

work was performed by Paxson [1] in the mid 1990s.1 He used
a measurement infrastructure allowing him to capture the
traces of 20,000 end-to-end TCP connections between 35
hosts in nine different countries. The study of the traces was
completed with an analysis of end-to-end routes (determined
with the traceroute utility). This was the first study enabling
the observation of end-to-end Internet traffic dynamics: rout-
ing stability, paths asymmetry, TCP dynamic, packets out-of-
order delivery, etc.

Since then, network metrology has become the subject of
many research projects and laboratories (Surveyor [2], Nation-
al Internet Measurement Infrastructure (NIMI) [3–5],
Réseaux IP Européens (RIPE) [6], Netsizer [7], Cooperative
Association for Internet Data Analysis (CAIDA) [8],
SPRINT/IPMON [9], METROlogie POur L’Internet et ses
Services (METROPOLIS) [10]). Some of them have no clear
objectives (storing data in measurement databases, measuring
Internet growth, etc.). Others focus on traffic characterization,
traffic modeling, the study of traffic matrices, and network

cartography. Traffic characterization consists of determining
the traffic volume in a given network. It also deals with vari-
ability of traffic volume and nature with time. The traffic
nature is the repartition of the traffic according to protocol
(TCP, UDP, etc.) and application (Web, mail, real-time multi-
media). Studies are also being carried out regarding packet
size, the number of simultaneous flows, flow size, and compo-
sition. The purpose of traffic modeling is to determine models
of packet arrival, flow arrival, and packet loss processes.
Other studies focus on paths that are used by packets in the
network and analyze routing dynamics and path symmetry.
Finally, certain projects try to map out the Internet by check-
ing all IP addresses in the network. All these studies have
strong repercussions [11]:
• For Internet Service Providers (ISPs): traffic characteri-

zation and modeling create easy dimensioning of networks.
• For network equipment designers: packet size repartition

is crucial when designing routers.
Moreover, now that the Internet is used for applications

with Quality of Service (QoS) constraints (real-time applica-
tions, etc.), ISPs and their customers negotiate QoS levels
through a Service Level Agreement (SLA). In this context,
metrology is useful in verifying that SLAs are met.

Network measurement can be performed either actively or
passively. Surveyor, NIMI, RIPE, and Netsizer are examples
of active measurement projects, while CAIDA and
SPRINT/IPMON work on passive measurements.
METROPOLIS deals with both measurement classes.

C

FABIEN MICHAUT AND FRANCIS LEPAGE, CRAN CNRS UMR7039

ABSTRACT
The science of communication network metrology consists of measuring the
performance of networks. This article is a tutorial on application-oriented

measurement tools and techniques for IP networks. First the principles of active
measurements are introduced and two important active measurement initiatives are

presented. Since metrology often requires precision in timing, a basic overview
related to time in computers and networks will be presented, followed by a definition

of principal network metrics. Metrics that will be discussed are one-way delay,
delay variation, round-trip time, packet loss, packet reordering, route, and

bandwidth. For each parameter, a definition is given and related measurement
tools and techniques are presented.

APPLICATION-ORIENTED NETWORK
METROLOGY: METRICS AND

ACTIVE MEASUREMENT TOOLS

SECOND QUARTER 2005, VOLUME 7, NO. 2

www.comsoc.org/pubs/surveys

1 Previous works on telecommunication lines or circuit-switched networks
focus on similar performance parameters (delay, jitter, etc.). However,
conceptual and technical differences between these networks and packet-
switched networks induce a new metrology approach.

1553-877X/05/$20.00 © 2005 IEEE

IEEE Communications Surveys & Tutorials • Second Quarter 2005 3

Passive techniques are carried out by observing network
traffic flows. They consist of capturing packet headers and
analyzing them. The best example of a capture tool is tcp-
dump, which is based on the libpcap library [12]. These tech-
niques do not add to network traffic. Passive measurement
can be done on two levels:
• At a microscopic level measurements are performed on

each packet traveling across the measurement point. An
example of collected information is packet size.

• At a macroscopic level measurements are performed on
flows. In this case, aggregation rules are necessary to
match packets into flows. Examples of collected data are
the number of flows per unit of time, flow bitrate, etc.
The “Real-time Traffic Flow Measurement” (RTFM)
working group of the Internet Engineering Task Force
(IETF) has worked on macroscopic measurements. It has
helped create a general passive measurement architec-
ture and describe the manner in which aggregation rules
are defined. Today this working group is closed.
Passive measurement techniques are particularly suitable

for (but not limited to) traffic engineering because they show
flow dynamics and distribution. The main problem with pas-
sive measurement is the data volume. The volume of captured
data can become very large on high-capacity links. Moreover,
it is hard to obtain end-to-end measurements passively: the
presence of traffic traveling between two measurement points
cannot be ensured and matching measurements that are per-
formed on different measurement points is difficult. Conse-
quently, passive measurements are usually used to determine
metrics characterizing one particular network element (“at-a-
point” metrics).

On the other hand, active measurements are performed by
sending probe packets to the network. The measurement flow
travels from source to destination. Upon reaching its destina-
tion, it is possible to calculate metrics by analyzing them.
Active measurements can determine the end-to-end QoS
experienced by a measurement flow for a particular path and
then measure the QoS as it is seen by applications. Addition-
ally, active measurements offer the flexibility to send probe
packets streams with particular properties (bitrate, packet
size, etc.). The main drawback of active measurements is that
additional network traffic is introduced. This “intrusive” (or
“invasive”) characteristic can potentially modify the properties
that are trying to be measured. First, it can result in measure-
ment errors or bias; second, it can lead to network overload.
The measurement traffic thus has to be limited to avoid net-
work disturbance and measurement errors.

As previously mentioned, the major idea behind active
measurements is to perform QoS monitoring and to verify
SLA. However, since active measurements determine the end-
to-end QoS as seen by applications, this type of measurement
is also useful for distributed applications (particularly when
complete control of network resources is not possible). In this
case, an understanding of the QoS of the network can allow
applications to adapt their execution to resource fluctuations.
For example, applications can adapt their throughput to the
loss of the network or the size of play-out buffers to the net-
work delay [13]. More complex application adaptation
schemes have been proposed [14–19]. In this context, we will
examine new developments of application-oriented metrology
techniques and tools. Note that metrology for traffic engineer-
ing is beyond the scope of this article.

The main objective of this article is thus to give a tutorial
on application-oriented measurement tools and techniques.
The first section presents active measurement generalities. It
presents active measurement principles and limitations, and
discusses the IETF working group dedicated to active mea-

surement and the NIMI project. Since active measurements
often need time and clock constraints to be achieved, the sec-
ond section deals with timing considerations. Each of the next
seven sections is devoted to the following network parameters:
one-way delay, delay variation (also referred to as jitter),
round-trip time, packet loss, packet reordering, route, and
bandwidth measurement. Definitions, measurement tech-
niques, and tools2 are presented for each parameter. Then we
discuss the problem of “intrusiveness” that occurs with active
measurements. Finally, we present our conclusions.

ACTIVE MEASUREMENTS

PRINCIPLES

Active measurements consist of sending probe packets into
the network from a source host (probe sender) to a destina-
tion host (probe receiver). By choosing particular properties
at departure (packet size, inter-departure time, bitrate, etc.),
it is possible to calculate metrics by analyzing the probe
stream characteristics (arrival time, inter-arrival time, etc.) at
the destination. Thus, one can determine end-to-end metrics
(from the source to the destination). Note that round-trip
measurements can also be made by making the probe receiver
send back responses to the source. In this case, measurements
are performed at the source.

Active measurement tools can be classified into the follow-
ing categories:
• Cooperative tools, which consist of separate sender and

receiver programs that are respectively installed on the
source and destination hosts.

• Non-cooperative tools, which consist of only one program
that includes the sending and receiving tasks. It avoids
installing dedicated software on the target end-system.
Notes related to security:

• Certain measurement tools are based on forcing routers
and hosts to generate ICMP packets. For security pur-
poses, routers and hosts can be configured to limit (or
avoid) the generation of ICMP messages. Additionally,
certain network sites use a firewall to filter incoming
ICMP traffic. In these cases, measurements are disrupt-
ed. This limitation concerns all the metrology techniques
using ICMP messages.
Some tools require having a listening TCP socket on the tar-

get host (such as Web servers). They use TCP behavior to force
the target host to send packets back (for example, by sending
SYN packets to the target). Since sending large streams of
SYN packets can be interpreted as a denial of service attack,
many network sites often use a firewall to filter or limit incom-
ing SYN traffic. This results in disrupting measurements.

For precise results, certain active measurement techniques
require strong time-related constraints to be achieved. Exam-
ples of these constraints are:
• Timing accuracy in sending probes (for example, when

sending probe streams that have to match inter-depar-
ture constraints.)

• Accurate time stamping of probes upon arrival.
• Accurate time synchronization of the source and the des-

tination to allow clock comparison between the two hosts.
Then, active measurement techniques will often induce

strong constraints on clocks (clock accuracy, clock stability,
etc.), and measurement errors will result from clock charac-
teristics. Timing considerations are presented later.

2 Most of the tools presented here are listed and downloadable through the
Caida laboratory Web site [8].

IEEE Communications Surveys & Tutorials • Second Quarter 20054

A parameter measurement is always performed at a specif-
ic protocol layer. If the parameter needs to be used at another
layer, the result must be modified in order to take into
account the protocols or devices operating between measure-
ment and using layers. This “encapsulation effect” is discussed
in the following section. Next, we will discuss the group in the
IETF that works on active measurements and the NIMI pro-
ject, which was the first large-scale project dealing with active
measurements.

ENCAPSULATION EFFECT

This article deals with metrology at the application layer, but
some of the tools presented work at lower protocol layers.
The user must be aware of the significant differences that can
exist between the measured value and the real value of the
parameter at the application layer. Likewise, a measurement
result could appear incorrect when a parameter value is
known, but at another layer. For example, the capacity of a
channel is often known at the data link layer and the capacity
measurement tools at the IP layer could give results that are
difficult to analyze. Layer overhead effect is presented in the
section dedicated to bandwidth.

Prasad et al. explain in [20] the effect of level 2 encapsulation
and its consequences according to packet length, and in [21]
they explain the effect of store-and-forward devices in capaci-
ty estimation. There are also deterministic and probabilistic
parts in the value difference between layer 2 and layer 3.

In conclusion, it is recommended to measure a parameter
at the user level. If this is not possible, it is necessary to care-
fully modify the measured value to obtain an accurate estima-
tion of the useful value.

IP PERFORMANCE METRIC (IPPM) WORKING GROUP

The IPPM working group of the IETF deals with active mea-
surements. It defines standard metrics and statistics, which
allow us to compare active measurements produced by dif-
ferent tools, for example. The IPPM has written RFCs on
metrics measurement and statistics calculation related to dif-
ferent parameters (packet loss, delay, etc.). In the remainder
of this article, we give metric definitions according to IETF
standards when available.

The IPPM recommends Poisson and periodic sending pro-
cesses of probe packets [22, 23]. The latter appears better
adapted to measuring continuous multimedia streams. Note
that IPPM is working on defining a Management Information
Base (MIB) to retrieve the results of standard metrics. The
IPPM is also actively working on the specification of a mea-
surement protocol, called the One-Way Active Measurement
Protocol (OWAMP) [24], to enable communication among
test equipment. The intent is to create a simple protocol that
will allow equipment from different manufacturers to interop-
erate, that is to say, initiate test streams and the exchange of
packets to collect metrics. In fact, OWAMP consists of two
inter-related protocols:
• The OWAMP-Control protocol is used to initiate, start,

and stop test sessions and collect their results.
• The OWAMP-Test protocol can exchange probe packets

between two end-points.
OWAMP defines the following logical roles (different roles

can be played by the same host, Fig. 1):
• The Session-Sender is the probe sender (source) of a test

session.
• The Session-Receiver is the probe receiver (destination) of

a test session.
• The Server manages test sessions. It is able to configure

session end-points and give test session results.
• The Control-Client is the end-system that requests test

sessions.
• The Fetch-Client is the end-system that requests test ses-

sion results.
OWAMP sends test streams with negotiated characteristics

such as packet size, number of packets, inter-departure time,
etc. For each probe, the server will return to the Fetch-Client
the send and receive timestamps and an indication if the
probe was lost. The Fetch-Client is then able to calculate all
one-way metrics defined by the IPPM (loss, delay, etc.).

OWAMP represents a significant advancement in active
measurement because it will “standardize” active measure-
ment tools. We will later discuss existing measurement tools
that are often developed using proprietary techniques and
which are not interoperable.

Owping/owampd [25] and QoSMet [26] implement
OWAMP. These tools are cooperative tools, but it should be
noted that clocks of hosts that implement OWAMP session
senders and receivers must be synchronized.

NATIONAL INTERNET MEASUREMENT INFRASTRUCTURE

NIMI was a project started by Vern Paxson to instrument
the global Internet. The main objectives of NIMI were:
• To diagnose performance problems.
• To study how the network behaved and evolved.
• To measure performance delivered by ISPs.
• To facilitate public access to Internet measurements.

A key characteristic of NIMI is that the measurement
infrastructure it has defined is scalable. This characteristic
is fundamental in the deployment of thousands of mea-
surement points and increasing the number of available
measurable paths. In this context, the NIMI architecture
consists of a measurement probe (NIMI probe), a mea-
surement client (MC), a configuration point of contact
(CPOC), and a data analysis client (DAC) [27]. The MC
injects measurement requests into the NIMI infrastructure.
It is the only component (which can run from a desktop
machine) operated by the end-user. A CPOC manages the
probes that are in its control zone (it gives policies to each
probe, etc.) . A NIMI probe is composed of a daemon
nimid and plugable measurement modules. Modules are
external to nimid and are third-party software, such as
treno [28] or traceroute [29]. nimid is unaware of the mod-
ules and only executes this software. “Wrappers” are
developed to obtain the results generated by the modules
and put them into a standardized form. The NIMI probe
ships results to a DAC, which acts as a repository and
post-processor of the data.

Bulk-Transfer-Capacity (TCP throughput), packet loss, and
hop count are end-to-end measurements collected by NIMI
probes.3 NIMI is also used to determine a matrix of distance in
the Internet. The NIMI infrastructure is used with other metrol-

n Figure 1. One-Way Active Measurement Protocol: different
logical roles can be played by the same host.

OWAMP control

OWAMP test

Control client
Fetch client

Session sender

Server

Session receiver

3 NIMI website allows to access to collected measurements [3].

IEEE Communications Surveys & Tutorials • Second Quarter 2005 5

ogy projects such as MINC (Multicast-based Inference of Net-
work-internal Characteristics [30, 31]) and METROPOLIS.4

TIMING CONSIDERATIONS

As seen in the previous section, active measurement techniques
often result in constraints to the clocks in the measuring end-sys-
tems (clock accuracy, clock stability, etc.).5 This section presents
a basic overview of time and computer clocks.6 We first define
the parameters related to the uncertainty of clocks. As measure-
ment tools are essentially developed under Unix, we then discuss
how a Unix clock works. Clock synchronization is needed in
order for several measurement techniques to be performed, and
so we will explain the basis of clock synchronization. Finally,
numerous techniques assume that probe packets are accurately
sent at predefined moments and/or time stamped upon arrival.
We will explain how this can lead to measurement error.

DEFINITIONS

Following are parameters related to clock uncertainty [33]:
• Synchronization error (offset): measures the extent to

which two clocks agree on what time it is. It is noted
TSYNCH .

• Accuracy: measures the extent to which a given clock
agrees with Coordinated Universal Time (UTC).

• Resolution: measures the precision of a given clock
(tick). For example, the clock on an old operating system
(OS) might have a resolution of about 10ms (Linux,
older versions than 2.2.0, etc.).

• Skew: measures the change of accuracy, or of synchro-
nization, with time. For example, a clock might gain
1.3ms per hour, and thus be 27.1ms behind UTC at one
time and only 25.8ms an hour later. We will also speak of
the skew of one clock in relation to another.

• Drift [34]: measures the change of skew with time. Drift
changes with temperature, and is often negligible. Note
that drift is sometimes used to talk about skew. In some
papers, skew is used to talk about synchronization.

UNIX CLOCK [32]

A computer contains two clocks: a hardware clock and a sys-
tem clock. The hardware clock allows the computer to keep
track of time when the computer is turned off. It is used when
the computer is booted up to update the system clock. This lat-
ter is implemented as a counter of timer interrupts that are
generated by the computer quartz oscillator. The period of
interrupts is usually 10ms. It means that when an interrupt
occurs, a periodic task increments the system clock with a value
corresponding to the period of the timer interrupts (here,
10ms). This value characterizes the granularity of the clock and
is called the tick. Such a granularity is too crude. To improve it,
the OS thus uses the clock cycle register (which counts central
processing unit [CPU] clock cycles) to interpolate between the

interrupts. This technique requires knowing the number of
CPU cycles per time unit. It is measured at boot time by count-
ing the number of cycles between several periods of interrupts
(usually around 50ms on Linux and 1.3s on RT-Linux).

This kind of clock is prone to error:
• Changes in frequency of the quartz oscillator (due to

changes in temperature and the age of the oscillator)
introduce skew.

• The measurement of the number of CPU clock cycles per
time unit is based on using the oscillator during a short
time interval. The interpolation thus inherits the skew of
the standard oscillator.

• This latter measurement suffers from integer arithmetic
effects.

CLOCK SYNCHRONIZATION

Clock synchronization is a complex problem. It can be achieved
by using Global Positioning System (GPS) cards, radio clock
receivers, or with Network Time Protocol (NTP) servers. Using
GPS cards is the most precise yet most expensive solution,
requiring the installation of exterior antennas (on the roof).
Radio clock receivers, while cheaper than GPS cards, are not as
accurate for many reasons.7 In fact, using NTP servers is the
most common solution for clock synchronization; it is expected
to be accurate to about 10ms on a WAN [35]. NTP synchro-
nization, while not perfect, can nevertheless offer significant
accuracy given the scale on which measurements are made. For
example, when measuring delays to the order of hundreds of
milliseconds, a synchronization error of 10ms may be sufficient.

NTP daemon is used in every scheme. It regulates clock
frequency and controls clock skew [34, 36] according to infor-
mation given by the time source (GPS, NTP servers, etc.).
Instead of directly changing the value of the clock, NTP con-
trols its frequency by adjusting the clock tick. This technique
prevents discontinuities in the clock. Note that discontinuities
might happen with implementations of NTP for Windows. In
fact, these implementations seem to be Simple Network Time
Protocol (SNTP) implementations [37].

In [32] the authors have shown that using NTP has positive
effects on clock stability, but only on large time scales.
Indeed, when synchronized to NTP servers, the NTP daemon
is subject to estimate false clock offset due to changes in net-
work delay resulting in unnecessary clock adjustments.8

ERRORS AND UNCERTAINTIES RELATED TO
WIRE-TIME VS. HOST-TIME

Measurement techniques often imply sending packets at spe-
cific times and timestamping upon their arrival. These timings
are referred to as “wire times.” In practice, we can only
directly measure the time from when the source grabs a time-
stamp just prior to sending the test packet and when the desti-
nation grabs a timestamp just after having received the test
packet. These timings are refereed to as “host times.” Mea-
surements then include errors related to these uncertainties at
the sender and receiver sides, respectively.

4 The NIMI infrastructure has been extended in Switzerland and in France
within the METROPOLIS project.

5 However, the reader should be aware that not all of the measurement
tools require a highly accurate clock. Time-constraints depend on the cho-
sen measurement technique and the order of magnitude of the measured
parameter.

6 The paper [32] gives a good overview of time considerations.

7 This receiver accuracy depends on the propagation conditions of the
radio-frequency signal.

8 In this context, Pazstor and Veitch have proposed in [38] an alternative
software clock based on the clock cycle register. (Here, the accuracy of the
estimation of the CPU cycle period is improved.) It offers a better resolu-
tion (around 1ns for a 1GHz CPU) and better stability. This clock is suited
for measurements that do not require end-to-end synchronization.

IEEE Communications Surveys & Tutorials • Second Quarter 20056

The error at the sender side depends on the latency to
timestamp the packet, move the packet from user to kernel
space, and transmit it on the network interface card. Note
that the OS scheduler can possibly assign the computing
resources to other concurrent processes between the time-
stamping and the sending operation. In [32] the authors
explain that this phenomenon can be reduced significantly by
carefully designing the sender software (affecting a high prior-
ity to the sending task or programming it on a real-time OS as
a real-time task).

The error at the receiving end depends on the latency to
receive a packet in the OS, move the packet from kernel to
user space, and timestamp the packet upon arrival. To mini-
mize this error, one can use network interface cards dedicated
to packet capture with integrated high accurate timestamping
[32] (these cards are directly synchronized to a GPS receiver).
Another solution is to timestamp packets at the kernel level:
packets are timestamped by the network interface driver when
entering and before moving to user space. Kernel-level time-
stamping can be performed on Unix using the SO_TIME-
STAMP datagram socket option. In this case, the recvmsg()
call will return a timestamp corresponding to when the data-
gram was received. Kernel-level timestamping can also be
made using the libpcap and Winpcap libraries (on Unix and
Windows, respectively) [12] that can capture packets in the
interface driver. To our knowledge, quantifying the difference
between kernel-level and application-level timestamping is an
open issue. It could be done by comparing kernel-level and
application-level timestamps for the same packet. However,
this kind of measurement strongly depends on hardware spec-
ifications (CPU frequency, etc.), the design of measurement
software, system specifications, and load (OS version, number
of user and kernel tasks that are being executed, etc.).

ONE-WAY DELAY

DEFINITIONS

The one-way delay is the time it takes a packet to go from
source to destination. It includes propagation delays, transmis-
sion delays, and queuing delays in intermediate systems
(routers, switches).

The IPPM defines [33] the one-way delay for a type-P
packet as follows:

Consider two network hosts, SRC and DST. For a real num-
ber dT, the “Type-P-One-way-Delay” from SRC to DST at T is
dT means that SRC sent the first bit of a Type-P packet to DST
at wire-time T and that DST received the last bit of that packet
at wire-time T + dT.

The IETF defines the following errors and uncertainties
and proposes the following methodology for measurements
calibration [33].

Errors and Uncertainties Related to Clocks — TSRC refers
to the observed time when the packet is sent by the source
clock. TDST refers to the observed time when the packet is
received by the receiver clock. The uncertainty in a measure-
ment of one-way delay is related to uncertainties in the clocks
of the source and destination hosts.
• The synchronization error between the source clock and

the destination clock will contribute to error in the delay
measurement. If we know TSYNCH, we can correct for
clock synchronization by adding TSYNCH to the uncorrect-
ed value of TDST – TSRC.

• The accuracy of a clock is important only in identifying
the time at which a given delay is measured. Accuracy is
not crucial to the accuracy of measurement of delay.

• The resolution of a clock adds to uncertainty about any
time measured with it. Resolutions of the source clock
and the destination clock are denoted as RSRC and RDST,
respectively.

• A part of the skew TSYNCH = f(t) can be approximated as
a linear function plus some higher-order terms. An under-
standing of the linear component can be used to correct
the clock. Using this correction, the residual TSYNCH is
made smaller. The function ESYNCH(t) is used to denote
an upper bound on the uncertainty in synchronization.

• Measurements include additional uncertainties related to
wire-time vs. host-time at the sender and receiver ends:
HSRC and HDST.
Put together, the clock-related problems introduce an

uncertainty of ESYNCH(t) + RSRC + RDST + HSRC + HDST.

Calibration — The goal of calibration is to determine mea-
surement error. From the previous sections, error in measure-
ments can be bounded by ESYNCH(t) + RSRC + RDST + HSRC
+ HDST.

Error can be evaluated in certain configurations using an
isolated network: clock-related uncertainties are minimized
through the use of a GPS time source. The sum of ESYNCH(t)
+ RSRC + RDST is small. The host-related uncertainties,
HSRC+HDST, can be bounded by connecting two instruments
with an isolated LAN segment, for example. If the test packets
are small, network connection will have a minimal delay that
may be approximated by zero. The “average value” of repeat-
ed measurements is the systematic error, and the variation is
the random error. Unfortunately, this calibration technique
cannot be used for end-systems that are geographically distant,
as in the case of computers connected via the Internet.

MEASUREMENT METHODOLOGY AND TOOLS

To measure one-way delay, a packet is stamped with the cur-
rent time and sent to the destination. At the destination, the
packet timestamp and the destination clock are read out. The
delay is then equal to the difference between the two values.
This technique implies that the clocks of the two end-systems
are synchronized.

One-way delay measurement is implemented in
owping/owampd [25] and QoSMet [26]. These tools can mea-
sure one-way delay along the forward and reverse path
according to IPPM recommendations.

Notes:
• In practice, the one-way delay is often calculated as half

the round-trip time. But as Paxson explains in [1], paths
tend to be progressively more asymmetric. The authors
in [39] observed the same tendency for links (DSL,
modem, satellite, etc.). Thus, this calculation is incorrect.

n Figure 2. Delay variation — impact on data periodicity.

Source

TT

T1 T2

Destination

IEEE Communications Surveys & Tutorials • Second Quarter 2005 7

• The authors in [1] and [39] give an overview of problems
that can arise when measuring delay.

ONE-WAY DELAY VARIATION

Delay variation is a key metric for many applications. For exam-
ple, a high delay variation can disrupt the transfer of continuous
media of voice (Fig. 2). In this case, the “rhythm” of audio data
delivery is crucial to ensure quality sound restitution.

DEFINITIONS

The IPPM defines [40] the delay variation for a type-P packet
as follows:

Consider two network hosts, SRC and DST. For a real num-
ber ddT “The type-P-one-way-ipdv” from SRC to DST at T1, T2
is ddT means that SRC sent two packets, the first at wire-time T1
(first bit), and the second at wire-time T2 (first bit) and the pack-
ets were received by DST at wire-time dT1 + T1 (last bit of the
first packet), and at wire-time dT2 + T2 (last bit of the second
packet), and that dT2 – dT1= ddT.

Errors and Uncertainties Related to Clocks — When mea-
suring one-way delay variation, errors and uncertainties are:
• Related to clock resolution. In this case, the uncertainty

is two times that of a single delay measurement.
• Related to wire-time vs. host-time.

Additional Metrics — The IPPM also defines the peak-to-
peak delay variation. It is defined as the difference between
the maximum and minimum values of a sequence of delay vari-
ation values. The use of the term “jitter” is deprecated. Never-
theless, this term is often used to define the absolute value of
the delay variation. In some cases, jitter is computed by taking
the absolute value of delay variation values and applying an
exponential filter indicated in [41]. Some authors define the
delay variation as the average deviation of the delay.9

MEASUREMENT METHODOLOGY AND TOOL

As delay variation is computed as the difference between the
delay of two consecutive packets, it requires the measurement
of one-way delay.

Note: Measurement of delay variation does not need clock
synchronization because errors will cancel each other when
the delay difference is calculated. Additionally, the effect of
skew is rather small over the concerned time scales.

One-way delay variation and peak-to-peak delay variation
measurement is implemented in QoSMet [26]. QoSMet can
measure these metrics along the forward and reverse path
according to IPPM definition.

ROUND-TRIP TIME (RTT)
DEFINITIONS

The RTT is the delay from the source to the destination and
back.

The IPPM defines [43] the RTT for a type-P packet as fol-
lows:

Consider the network hosts, SRC and DST. For a real num-
ber dT, the “Type-P-Round-trip-Delay” from SRC to DST at T is
dT means that SRC sent the first bit of a Type-P packet to DST
at wire-time T, DST received that packet, immediately sent a
Type-P packet back to SRC, and that SRC received the last bit
of that packet at wire-time T + dT.

Errors and Uncertainties Related to Clocks — When mea-
suring RTT, errors and uncertainties are:
• Related to clock resolution. Timestampings are per-

formed on the same host, and then error is 2 * RSRC .
• Related to wire-time vs. host-time, Hinitial + Hfinal .
• Related to the destination producing a response: Hrefl .

Measurement error can be estimated using a similar
approach as for one-way delay (isolated network, small size
packets, here we have 2 * RSRC + Hinitial + Hfinal + Hrefl).

MEASUREMENT METHODOLOGY AND TOOL

To measure RTT, a packet is stamped with the current time
and sent to the destination. When the packet is completely
received at the destination, it sends a corresponding response
packet back to the source. The RTT is equal to the difference
between the receiving time at the source and the time stamp
value. The measurement is easier than one-way delay mea-
surement, because there is no issue with source and destina-
tion clock synchronization. Clock skew is negligible due to the
measurement time-scale. The greater problem is anything that
would cause a discontinuity in the clock. This might happen
with the SNTP protocol, for example.

The best known RTT measurement tool is ping (Fig. 3).
Ping is a non-cooperative tool that measures RTT using
ICMP echo-reply probes. When a host receives ICMP echo
packets, it sends back reply packets that are the same size as
echo packets. The source then sends ICMP echo packets to
the target host and measures the time it takes the correspond-
ing ICMP reply packets to come back.

PACKET LOSS

DEFINITIONS

The reliability of the path is expressed by the packet loss rate.
This metric is equal to the number of non-received packets
divided by the total number of sent packets.

The IPPM defines [44] the one-way packet loss for a type-
P packet as follows:9 In this case, delay is assumed to have a normal distribution [42].

n Figure 3. Ping output.

$ ping 64.124.140.199
PING 64.124.140.199 (64.124.140.199) from 193.50.39.64 : 56(84) bytes of data.
64 bytes from 64.124.140.199: icmp_seq=0 ttl=241 time=163.773 msec
64 bytes from 64.124.140.199: icmp_seq=1 ttl=241 time=159.967 msec
64 bytes from 64.124.140.199: icmp_seq=2 ttl=241 time=159.973 msec
64 bytes from 64.124.140.199: icmp_seq=3 ttl=241 time=159.975 msec
64 bytes from 64.124.140.199: icmp_seq=4 ttl=241 time=159.975 msec
64 bytes from 64.124.140.199: icmp_seq=5 ttl=241 time=159.976 msec
--- 64.124.140.199 ping statistics ---
6 packets transmitted, 6 packets received, 0% packet loss
round-trip min/avg/max/mdev = 159.967/160.606/163.773/1.471 ms

IEEE Communications Surveys & Tutorials • Second Quarter 20058

Consider two network hosts, SRC and DST. The “Type-P-
One-way-Packet-Loss” from SRC to DST at T is 0 means that
SRC sent the first bit of a Type-P packet to DST at wire-time T
and that DST received that packet. The “Type-P-One-way-Pack-
et-Loss” from SRC to DST at T is 1 means that SRC sent the
first bit of a type-P packet to DST at wire-time T and that DST
did not receive that packet.

Additional Metrics — It is generally agreed that a packet
loss is an indication of congestion. The next packet may also
get lost. As a result, the losses are dependent. In [45] the
authors have analyzed Internet packet loss statistics. Their
results verify that packet loss exhibits dependence. The loss
pattern (or loss distribution) is a key parameter in certain
applications (such as voice and video). Two different loss dis-
tributions for the same loss rate could potentially produce dif-
ferent performance degradation.

In this context, the IPPM proposes metrics and statistics on
loss pattern [46]. Assuming that consecutive packets in a time
series sample are given sequence numbers that are consecutive
integers, it defines two metrics as loss distance and loss period.
The loss distance is the difference in sequence numbers of two
consecutively lost packets that may or may not be separated by
received packets. A loss period is a sequence of consecutive pack-
ets that have been lost, starting when a packet is lost and the pre-
ceding packet is received, and ending when a packet is received
and the preceding packet is lost (Fig. 4). Using these two metrics,
useful statistics can be calculated as the average length of loss
periods and the average length of inter-loss periods.

The IPPM also proposes a statistic called one-way loss
noticeable rate. A loss of a packet is said to be “noticeable” if
the distance between the lost packet and the previously lost
packet is no greater than ∆, where ∆ is the “loss constraint.”
This statistic is useful for multimedia codecs that are able to
sustain losses by “concealing” the effect of loss by making use
of past history information. By choosing delta based on codec
sensitivity, one can measure how “noticeable” a loss might be
for quality purposes. Figure 5 shows an example (from [46])
where loss constraint is equal to 99. A loss rate of one percent
with a spread of 100 between losses may be more desirable
for some applications compared to the same loss rate with a
spread that violates the loss constraint.

MEASUREMENT METHODOLOGIES AND TOOLS

According to IETF recommendations, detection of non-
received packets is performed using time-out values. If the
packet fails to arrive within a reasonable period of time, the
packet is considered lost. The definition of reasonable is
vague and depends on user needs [44]. Note that it is impossi-
ble to use a time-out value when the source and the destina-
tion clocks are not synchronized.10

One-way packet loss measurement, according to IPPM rec-
ommendations, is implemented in owping/owampd [25] and
QoSMet [26]. These tools can measure loss along the forward
and reverse path. QoSMet also implements the one-way loss
noticeable rate metric.

Ping is the better known tool for measuring losses. It
determines round-trip losses of ICMP probe packets (Fig. 3)
and is not able to distinguish a difference between a loss that
occurs in the forward or reverse path. Note that experiments
conducted in [45] have shown that packet loss is highly asym-
metric.

Alternative Methodology based on TCP Acknowledg-
ment Scheme — Reference [47] introduces TCP-based
measurement methodology that measures packet loss
rate. It can estimate one-way loss rate in both directions
of an end-to-end connection through observation of TCP
behavior. The technique is based on TCP Acknowledg-
ment (ACK) analysis. It operates in two phases. During
the data-seeding phase, the source sends a series of TCP
packets to the destination. The second phase is called the
hole-filling phase. This phase is about discovering which
of the packets sent in the previous phase have been lost
by analyzing TCP ACK packets. If the last sent packet
has been acknowledged, none of the packets have been
lost. If this is not the case, the ACK can determine the
number of the f irst lost packet (Fig. 6a). The source
retransmits the corresponding packet and records that a
packet has been lost. The procedure is repeated until the
last packet sent during the first phase has been acknowl-
edged.

Backward losses are determined by detecting ACKs that
were lost. The main problem is knowing the number of ACKs
that were sent by the destination. The ideal condition is that
the target sends a single ACK for every data packet it receives.
Unfortunately, this is not the case for most TCP implementa-
tions. Receivers do not respond immediately, but instead wait
(from 100 to 500ms) for additional packets to limit the num-
ber of ACKs.

To force the destination to respond to each packet
received, the methodology takes advantage of the TCP
“fast-retransmit” algorithm. This algorithm was initially
designed to al low a receiver to explicit ly request the
retransmission of a lost packet. The receiver uses it when
he detects a “hole” in the received sequence numbers.
Fast-retransmit sends an ACK immediately when an out-
of-order packet is received, but for the last in-sequence
TCP segment. During the data-seeding phase, the source
skips the first sequence number and then ensures that all
ensuing packets wi l l be received out-of-sequence. I t
forces the receiver to acknowledge each received packet
(Fig. 6b). Therefore, the source is able to calculate the
loss rate on the reverse path knowing the number of
received packets at the destination and the number of
ACKs it has received . This measurement methodology is
implemented in Sting [47], which is a non-cooperative
tool.

n Figure 4. Loss period and loss distance.

Loss
period

Lo
ss

di

st
an

ce
s

1 2

Loss
period

3 4 5 6 7 8 9 10

10 In practice, loss detection can also be based on analysis of packet
sequence numbers (assuming that a packet is lost when n next packets are
arrived).

IEEE Communications Surveys & Tutorials • Second Quarter 2005 9

PACKET REORDERING

Ordered delivery of packets is essential for real-time media
streaming applications [48] and the TCP protocol [49–51].
Packet order must be considered in play-out buffer dimen-
sioning of real-time streaming applications and in [50] it was
clearly shown that out-of-order delivery affects TCP. For
instance, out-of-order packets can cause TCP senders to
unnecessarily retransmit packets and/or the congestion win-
dow to increase at a slower rate than normal. It has led some
authors to propose modifications to TCP to better tolerate
packet reordering [52, 53] (these works mainly focus on
enhancing the retransmit scheme of TCP) and others to pro-
pose Partially Ordered Connection (POC) protocols that
accept limited packet reordering [54–56].

Packet delivery order can be changed for different reasons:
• When packets from the same stream use different paths

(multi-path routing [57]).
• In [50] it was shown that out-of-order delivery is essen-

tially caused by parallelism in network devices and logi-
cal links (packets can take different paths through a
switch, for example). Packet delivery order can then be
modified even when using the same route.

• Packet reordering can occur when layer 2 retransmission
occurs (particularly across wireless links) [49].

• Reordering occurs when packets of a flow are assigned to
multiple buffers that have different service rates.
The reader can find a good overview on pack-

et reordering in [50].

DEFINITIONS

As explained in [58], it is possible to interpret the
reordering of packets differently. The following
example is taken from [58]. Consider two packet
sequences (1, 3, 4, 2, 5) and (1, 4, 3, 2, 5). The
different possible interpretations are:
• Non-respect of the total order: Packets 2, 3,

and 4 are out of order in both cases.
• Non-respect of the packet number growth

(losses are accepted): Only packet 2 is out of
order in the first sequence, while packets 2
and 3 are out of order in the second.

• Expected packet not arrived (losses are not
accepted): Packets 3 and 4 are out of order
in both the sequences.

• Arrival sequence numbering does not corre-
spond to the packet number: Packets 2, 3, and
4 are out of order in the first sequence,
while packets 4 and 2 are out of order in the
second sequence.
This ambiguity results in different propositions

of reordering definitions and metrics. Reordering is currently
being discussed at the IPPM and two drafts have been pro-
posed.

Jayasumana et al. Proposition — In [58] the authors define
out-of-order packets as follows: “When a packet other than the
expected packet arrives, it is considered as an out of order pack-
et, provided it is not a duplicate of an already received packet.”
A packet is thus said to be an early-packet when it arrives
before its expected place in the sequence; it is considered a
late-packet when it arrives after its expected place. Based on
these definitions and assuming that an arrived packet with a
sequence number greater than the expected is stored in a
hypothetical buffer to recover from reordering, the three fol-
lowing metrics are calculated:
• The reorder density is the distribution of buffer occupancy

frequencies FB[i] normalized with respect to the total
number of occurrences ΣFB[i], provided that FB[i] is the
number of times the buffer occupancy takes the value of i.

• The early-packet density is the distribution of early fre-
quencies FE[i] normalized with respect to the total num-
ber of occurrences ΣFE[i], provided that FE[i] is the
number of packets that arrived i places early.

• The late-packet density is the distribution of late frequen-
cies FL[i] normalized with respect to the total number of
occurrences ΣFL[i], provided that FL[i] is the number of
packets that arrived i places late.

n Figure 5. Noticeable losses with ∆ = 99. Encircled numbers indicate noticeable losses.

1 2 100Sequence

Loss distance

200 300 400 500

100 100 100 100 100

1 2 100Sequence

Loss distance

175 275 290 400

100 75 100 15 110

n Figure 6. Loss measurement technique based on TCP acknowledgment
scheme.

(a) Forward loss (b) “ACK parity” using the
 fast-retransmit
 algorithm of TCP

2

3

2

1

Source Destination

4

3

2

1

1

1

Source Destination

IEEE Communications Surveys & Tutorials • Second Quarter 200510

Note that to cope with packet losses, an occupancy thresh-
old is defined. It expresses the tolerance of the application to
the maximum allowed hypothetical buffer size. If an out of
order packet needs to be stored in the hypothetical buffer
already filled to the value of the occupancy threshold, the cur-
rently expected packet is considered to be delayed more than
the tolerance and thus is assumed lost.

Morton et al. Proposition — The other draft [48] defines
out of order or reordered packets as arriving packets with
sequence numbers smaller than their predecessors. This is
equivalent to the reordering definition of Paxson [1]. Then
only “late” packets are declared reordered. It is the only
way to distinguish reordering from packet losses (basing
the definition on “premature” packets leads to ambiguity
between reordering and losses11). This definition is speci-
fied in pseudo-code in Fig. 7 with Type-P-Reordered the
calculated metric, s the packet sequence number applied at
the source, in units of messages, and NextExp the Next
Expected Sequence number at the Destination, in units of
messages.

Additional Metrics — Additional metrics are proposed in
the Morton et al. proposition [48]. The Reordered-Ratio
metric defines the ratio of reordered packets of a stream of
packets. The Reordered-Extent metric gives the extent to
which packets are reordered, i.e. the maximum distance (in
packets) from a reordered packet to the earliest packet
received that has a larger sequence number. The extent
then corresponds to “offset” metrics (Late-Time and Byte-
Offset) indicating buffer time or storage in bytes that a
receiver must possess to accommodate reordered packets.
Finally, the authors have defined a TCP-relevant metric, n-
Reordering, whose aim is to detect unnecessary TCP retrans-
missions due to the “fast-retransmit” algorithm, which is
triggered by a series of duplicate ACKs. If the sender sees
three duplicate ACKs, it assumes that the data (immediate-
ly after the byte being acknowledged) has been lost and
retransmits that data. Out of order delivery can cause
duplicate ACKs and then abnormally fast retransmission
[50]. The n-Reordering metric is defined as follows. A
received packet i (n < i ≤ l) with source sequence number
s[i], is n-reordered, if and only if s[j] > s[i] for all j with i –
n ≤ j < i (Fig. 8). Detecting instances of n-reordering with

n greater than 3 is useful for detecting unnec-
essary retransmissions.12

MEASUREMENT METHODOLOGIES AND TOOLS

The reordering metric measurement according to
[48] is implemented in owping/owampd [25] and
QoSMet [26]. According to Morton et al. recom-
mendations, these tools can measure along the
forward and reverse path by sending streams of
packets and by analyzing packets sequence num-
bers.

Alternative Methodology based on Selective
Acknowledgments (SACKs) — To measure
reordering, the authors in [50] calculate the num-
ber of SACKs [59] blocks required to cover out
of order packets in its test stream, if the session

were a TCP connection (a test consists of sending repeated
ICMP echo packets to a remote end-system and evaluating
the order of the ICMP echo reply packets). This technique
requires eliminating losses by renumbering received packets
to ensure that all the holes in the SACK scoreboard are due
to reordering and not due to packet loss. This metric then has
a minimal value for in-order data and the property to match
an intuitive assessment of the amount of scrambling in a given
data set. The use of ICMP echo request/reply packets does
not distinguish any difference between reordering in the for-
ward or the reverse path.

Alternative Methodologies based on Pairs of Packets —
In [49] packet reordering is measured as the number of
exchanges between pairs of test packets. For measuring this,
the authors have proposed a series of techniques that use the
behavior of the TCP and IP protocols to estimate one-way
reordering:

•The first technique is the “single connection test.” It con-
sists of using a single TCP connection to the remote end-sys-
tem. It takes advantage of the cumulative acknowledgment
scheme of TCP: by sending a pair of packets (with label “data
1” and “data 3” in Fig. 9 and analyzing the corresponding
received ACKs, the source is able to detect if packets are
reordered in the forward and/or in the reverse path. One of
the limitations to this approach is that two samples must be
generated and delivered from the remote host. This may not
occur for two reasons: first, if one of the data packets or one
of the ACKs is lost, or second, if the receiver chooses to send
a single ACK for the two packets due to the delayed acknowl-
edgment algorithm. (In case of in-order delivery at the receiv-
er, see earlier section.)

•To cope with the previous limitations, a second tech-
nique, called the “dual connection test,” is introduced (Fig.
10). It consists of analyzing the identification field of the IP
packet header (IP packet identifier (IPID)). The IPID field
has been designed for fragmentation purposes: the same IPID
value is copied into each fragment of a datagram. The receiv-
er uses it to identify fragments belonging to the same data-
gram. To work, this technique implies that the IPID value is
unique for each datagram. The common IPID implementa-
tions use an increasing function to generate IPID values. The
IPID field can then be used to determine the order in which

n Figure 8. n-Reordering metric.

n packets

2 5 1 6 7

11 Note that the scope of this draft is to define a metric that is orthogonal
to the loss metric. In this context, the different approaches presented in the
two drafts are complementary.

n Figure 7. Type-P-reordered metric calculation.

On successful arrival of a packet with sequence number s˜:
if s >= NextExp, /* s is in-order */

then
NextExp = s + 1;
Type-P-Reordered = False;

else /* when s < NextExp */
Type-P-Reordered = True

12 The authors in [48] clearly note that “the definition of n-reordering can-
not predict the exact number of packets unnecessarily retransmitted by a
TCP sender (). The definition is less complicated than a TCP implementa-
tion where both time and position influence the sender's behavior.”

IEEE Communications Surveys & Tutorials • Second Quarter 2005 11

packets are sent. The dual connection test uses this property
to measure reordering across a pair of TCP connections. Two
packets are sent to the remote host (one on each connection)
with sequence numbers greater than that expected to force
the receiver to send ACKs immediately. (To avoid the delayed
acknowledgment algorithm, see earlier section.) Knowing the
order in which packets are sent and looking at the IPID val-
ues of the ACKs, it is possible to detect if packets are
reordered in the forward and/or reverse path (Fig. 10). (The
association between sample packets and their ACKs is easily
performed by using the source and destination port numbers.
It is for this reason that two connections are used.) However,
this technique has some limitations: first, all OSs do not gen-
erate IPID using an increasing function, and second, using
two connections can be problematic when connections are
aliased through a transparent load balancing device, since
each connection can be assigned to a separate host.

•To address the previous limitations (delayed acknowledg-
ment algorithm, non-increasing IPID, load balancers), a third
technique, the “SYN test,” is introduced. Load balancers always
forward packets of a given TCP connection to the same host.
Then, the “SYN test” uses a single TCP connection to take
advantage of TCP’s three way handshake, and consists of send-
ing pairs of packets that are TCP SYNs differing only in their
starting sequence number. As shown in Fig. 11, the sender will
receive different sequences of packets according to the pres-

ence (or absence) of reordering in the forward path and/or
reverse path. These techniques are implemented in Sting [47].

ROUTE

DEFINITION

The route is an ordered sequence of nodes that represent a
path from a source to a destination crossed by the exchanged
traffic. Each node is identified by its IP address. A complete
route from a source to a destination may consist of a single IP
address or multiple IP addresses.

MEASUREMENT METHODOLOGY AND TOOL

The route from source to destination can be determined by
taking advantage of the “time to live” (TTL) field of IP pack-
ets (the TTL field was meant to prevent packets from circulat-
ing around routing loops). Routers have to decrease it by one
unit when processing the packet. If the router decreases the
TTL field to zero, it discards the packet. In this case, the
router sends back an ICMP “time exceeded” message inform-
ing the sender that the packet was dropped. To trace the
route to the destination, the source first sends UDP packets
to the destination with TTL fixed to 1. The first path router
then discards these packets and sends back ICMP messages to

n Figure 9. Single connection test. Note that sample packets are 1 byte TCP data packets in
this example.

No
reordering

Data 2

ACK 1

Pr
ep

ar
at

io
n

ph
as

e
M

ea
su

re
m

en
t

ph
as

e

Data 1

ACK 3

Data 3

ACK 4

Forward path
reordering

Data 2

ACK 1

ACK 1

ACK 4

Data 3

Data 1

Reverse path
reordering

Data 2

ACK 1

ACK 4

ACK 3

Data 1

Data 3

Forward and
reverse path
reordering

Data 2

ACK 1

ACK 4

ACK 1

Data 1

Data 3

n Figure 10. Dual connection test.

No
reordering

Ipid n

Ipid > n

Forward path
reordering

Ipid n

Ipid > n

Reverse path
reordering

Ipid n

Ipid > n

Forward and
reverse path
reordering

Ipid n

Ipid > n

IEEE Communications Surveys & Tutorials • Second Quarter 200512

the source to inform it of the drops. ICMP message headers
include the router address, which allows the source to identify
the first hop. Next, the source sends packets with TTL fixed to
2, which identify the second hop. It proceeds in this fashion
until it receives a reply from the destination (Fig. 12).

This methodology has been proposed and implemented by
Van Jacobson in “traceroute” [29]. It is a non-cooperative
tool. Note that experiments performed by Paxson [1] have
shown many traceroute limitations. The principle ones are:
• The route can change between successive probe packets.

There is no guarantee that probes of different hops will
take the same route as previous probes.

• Traceroute assumes that intermediate routers send back
ICMP messages. As explained before in the article, some
routers could not generate ICMP messages. In this case,
traceroute will fail to give a complete route.

• The goal of traceroute is to determine the route at the IP
layer and not to provide layer 2 hops (ATM switches, for
example). Traceroute is not designed to elicit lower-layer
hops. The user should thus be aware that successive IP

routers can be connected through different link-layer
technologies (ATM, Frame Relay, etc.).

BANDWIDTH
More precisely, four bandwidth measurements can be per-
formed:
• Capacity/raw bandwidth of a link
• End-to-end capacity of a path
• Available bandwidth of a link
• Available bandwidth of a path
To these four parameters, we add the bulk-transfer-capacity
(BTC), which is a pertinent bandwidth-related metric in
TCP/IP networks. In the following sections we will define
these parameters and present the measurement techniques
and tools for each parameter.13

n Figure 12. Route determination.

Router 1

Source

UDP probe
TTL=1

Destination

Message ICMP
time exceeded

ICMP packet
time exceeded

UDP probe
TTL=2

ICMP packet
time exceeded

UDP probe
TTL=n

ICMP packet
port unreachable

UDP probe
TTL=n+1

Router 2 Router n

13 An overview of bandwidth measurement techniques and methodologies
is given in [20].

n Figure 11. SYN test.

rst/ACK

syn + ACK1

syn 10

syn 1

No
reordering

rst/ACK

syn + ACK10

syn 10

syn 1

Forward path
reordering

rst/ACK

syn + ACK1

syn 10

syn 1

Reverse path
reordering

rst/ACK

syn + ACK10

syn 10

syn 1

Forward and
reverse path
reordering

IEEE Communications Surveys & Tutorials • Second Quarter 2005 13

DEFINITIONS (BASED ON DEFINITIONS FROM [20] AND [60])

P is a network path from source to destination. P is a sequence
of H store-and-forward links. We assume that P is fixed and
unique (no routing changes or multipath forwarding occur
during the measurements).
• The (per-hop) capacity/raw bandwidth of a link defines

the maximum rate at which packets can be transmitted
by the link. The capacity of the link i is noted Ci.

• C is the end-to-end capacity of the path:

(1)

• The narrow link is the link with the smallest capacity
along the path. The narrow link is the link j such as:

(2)

• We assume that the link i is transmitting Ciui bits during
a time interval T. ui is the utilization rate of the link i
during T, with 0 < ui < 1. The available bandwidth Ai of
the link i is:

Ai = Ci(1 – ui) (3)

The available bandwidth of a link depends on the traffic
load at that link.
• The available bandwidth A of the path P during the time

interval T is the minimum of the available bandwidth of
all links that compose P:

(4)

•The tight link is the link with the minimum available
bandwidth along the path. The tight link is the link j
such that:

(5)

•The BTC represents the achievable throughput by a TCP
connection on the end-to-end path.
Note: The term bottleneck link has been used in the past

to refer to both the tight link as well as the narrow link.

ENCAPSULATION OVERHEAD

Bandwidth (especially capacity) is often known at the
data link layer. Prasad et al. have shown that the corre-
sponding capacity at the IP layer depends on the size of
the IP packet re lat ive to the layer 2 overhead [20] .

Indeed, the layer 2 header is the same size regardless of
the IP packet.

The transmission time T3 of an IP packet of size L3 is:

(6)

with H2 the size of the layer 2 header and C2 the layer 2
capacity.

The corresponding bandwidth at the IP layer is:

(7)

Equation 7 shows that bandwidth at the IP layer depends
on IP packet size and the layer 2 header size.

Figure 13 shows the IP capacity as a function of packet size
for the 10BaseT Ethernet [20]. It has been obtained by using
equation 7 with C2 = 10 Mb/s, H2 = 8 + 18 + 12 = 38 bytes
= 304 bits (preamble, header, inter-frame gap). In this exam-
ple, the IP capacity is 7.24 Mb/s for 100 byte packets and 9.75
Mb/s for 1500 byte packets.

PER-HOP CAPACITY

In this section we present the main models to measure per-
hop capacity and their implementations: the one-packet
model and the multi-packet model. The reader can find exten-
sions of the one-packet model in [39] (a case of asymmetric

C
L

T

L
L H

C

C
H
L

3
3

3

3

3 2

2

2

2

3
1

= = + =
+

T
L H

C3
3 2

2
=

+

A Aj
i H

i=
= …
min
1

A C u A
i H

i i
i H

i= −{ } =
= … = …
min () min
1 1

1

C Cj
i H

i=
= …
min
1

C C
i H

i=
= …
min
1

n Figure 13. Link capacity delivered to IP packets as a function
of packet size.

IP packet size (bytes)
1250 15000

0

1

C
ap

ac
it

y
at

 IP
 la

ye
r

(M
b/

s)

2

3

4

5

6

7

8

9

10

1000750500250

n Figure 14. Per-hop capacity measurement.

Time

Packet

Packet

Link 1

Routers

Link 0t0

s/b0

sd1

t1
d0

s/b1

t2

With:
S: packet size
bi: capacity of the link i
di: propagation delay of the link i
l: number of links, here l=2

then, t2 = t0 + Σ (s
+ di)bi

l=1

i=0

IEEE Communications Surveys & Tutorials • Second Quarter 200514

links) and in [61] (“packet quartets”). We do not present
these complex extensions and improvements in this article,
given its tutorial nature.

One-Packet Methodology — The one-packet model, also
known as the Variable Packet Size (VPS) model, was intro-
duced by Jacobson [62] and Bellovin [63]. By one-packet
model it is inferred that the model does not account for intra-
flow queuing delay. The model assumes that delay is linear
with respect to packet size, and then proposes to express the
packet delay as a function of the packet size and the capacity
of each crossed link. Figure 14 shows the example of a packet
that crosses two links. The delay tl – t0 to reach node l is the
sum of the transmission delays

and propagation delays

of all the links along the path (using the notation
of Fig. 14):

(8)

The di’s are constant because they are propaga-
tion delays, then:

(9)

Formula 9 is the equation of a line with a slope
kl:

(10)

One can then determine the kl’s by measuring the delays from
node 0 (the source) to the node l of packets of different sizes
s, and using linear regressions. When the kl’s are known, the
capacity of each link is calculated using the following equation:

(11)

To summarize, the method then consists of:
• Determining packet delays of different sizes from a

source to each router that is on the path between the
source and the destination

• Calculating the kl’s using linear regressions
• Calculating the capacities using Eq. 11

One-Packet Implementations — Pathchar [62], Bing [65],
clink [66], and pchar [64] implement the one-packet tech-
nique. All these tools are non-cooperative tools. A screenshot
of pathchar output is presented in Fig. 15.

In all these implementations, the source reaches each
router by sending probe packets and exploiting the TTL field
of IP packets and ICMP “time exceeded” messages as trace-
route. This technique allows the sender to measure the RTT
to each router. This mechanism is repeated for different pack-
et sizes. Assuming that links and paths are symmetric, Eqs. 9
and 11 are now:

(12)

Notes:
The one-packet model uses packet transmission time (or

serialization time) to perform calculations. The authors in [21]
have shown that store-and-forward layer 2 devices (Ethernet
switches, for example) can cause significant underestimation
of capacity. Indeed, these types of devices introduce addition-
al serialization delay.14

RTT s
b

K b
k kl

ii

l

l
l l

=

+ =
−=

−

−
−

∑ 2 2

0

1

1
1

,

b
k kl

l l
−

−
=

−1
1

1

k
bl

ii

l
=

=

−
∑ 1

0

1

T s
b

Kl
ii

l
=

+
=

−
∑ 1

0

1

T t t
s

b
dl l

i
i

i

l
= − = +

=

−
∑0

0

1

di
i

l

=

−
∑

0

1

s

bii

l

=

−
∑

0

1

n Figure 17. Tailgating technique.

Router 1

Source Destination

Tailgated

Tailgater

Router 2 Router 3

n Figure 16. Multi-packet model.

tk
l

qk
l

Time

Routers

Link I-1 Link 1

Packet k-1

tk-1

Packet k

Packet k-1

Packet k

dl

l+1

14 The authors in [21] have also shown that cut-through layer 2 devices
(such as ATM switches) introduce a constant delay term, so they do not
affect the accuracy of one-packet tools.

n Figure 15. Pathchar output.

metro1:/# pathchar -m 1500 193.54.10.10
pathchar to 193.54.10.10 (193.54.10.10)
doing 32 probes at each of 45 sizes (64 to 1500 by 32)
0 localhost
| 8.2 Mb/s, 158 us (1.78 ms)
1 gw1.sciences.stannet.ciril.fr (193.50.39.254)
| 17 Mb/s, 42 us (2.57 ms), 15% dropped

2 esstin.u-nancy.fr (193.54.10.10)
2 hops, rtt 401 us (2.57 ms), bottleneck 8.2 Mb/s, pipe
6680 bytes

IEEE Communications Surveys & Tutorials • Second Quarter 2005 15

Lower-layer fragmentation effects can affect one-packet
tool precision by adding lower-layer headers [61] (minimum
frame size in Ethernet networks, for example).

The model assumes that packets observe no queuing. This
assumption is not realistic: in practice, queuing increases
delays and results in distorting calculations. Additionally,
using RTTs doubles the possibility that queuing will affect
measurements.
• To compensate, the authors in [62] and [63] base their

calculations on the minimum of several observed delays
of a particular packet size. Many packets may then be
required to filter out queuing effect and perform the
regression with confidence [67].

• Downey et al. [66] reduce measurement traffic by avoid-
ing sending packets once they detect the convergence of
a bandwidth estimate (using statistical methods).

• In [61], the bandwidth calculation is based on delay varia-
tion measurement instead of delay measurement. It lim-
its the number of probes sent to the network.

• To limit the number of packets it sends, the multi-packet
model has been introduced in [67]. It is derived from
the one-packet model. We present it in the following sec-
tion.

Multi-Packet Methodology — As explained before, the one-
packet model is costly in terms of the traffic that must be sent.
To compensate, Lai et al. have introduced the multi-packet
model (or tailgating model) in [67]. This model is derived
from the one-packet model and focuses on intra-flow queuing
delays.

Figure 16 shows the example of two consecutive packets
k – 1 and k that cross two links (exponents indicate packet
numbers). It also shows that the arrival time of packet k at
link l is equal to its transmission time tk

0 plus the sum of all
the previous link latencies di, transmission delays (sk/bi), and
queuing delays due to other packets in the same flow qk

i.
Using Eq. 8, tkl is then:

(13)

qk
i is modeled using the following equation:

(14)

The multi-packet model equation is obtained by combining
Eqs. 13 and 14:

(15)

Assuming that it is possible to send one packet with no
queuing and a second packet that queues behind the first
packet at a specific link lq, the delay can be split into the
time to travel to lq, the time spent at lq, and the time spent
after lq:

(16)

By including the assumption that the first packet experiences
no queuing and by simplifying:

(17)

For more compact notation, we define β and δ such that:

(18)

Using these definitions:

(19)

From the previous equation, we can derive a system of
equations for the capacities of each of the links along a path.
There are l equations for l links. The equation for the link lq
is:

(20)

β l–1 and δ l–1 are calculated as in the one-packet model in
a separate phase. As explained before, this phase is very
costly in terms of the traffic that has to be sent because it
must send packets of many sizes and many packets per size.
However, the multi-packet technique does it once for the
entire path, while the one-packet technique does this once
for every link.

The method then consists of using the recursive structure
of equation 20 to estimate the bi’s:
1 Initialize lq = 1.
2 Determine β l q –1 i.e., measure the delay from the source

to the node lq .
3 Calculate the capacity blq.
4 Increment lq and go to step 2.

The main advantage of this method is that the delays to
each router need only to be measured for one packet size.

Multi-Packet Implementation — The multi-packet model is
implemented in Nettimer [67]. It is non-cooperative.15 In
practice, the largest possible non-fragmented packet with a
particular TTL field is sent. It is immediately followed by the
smallest possible packet. The smaller packet almost always has
a lower transmission delay than the larger packet’s transmis-

b
s

t
s s s

t
l

k

l
k

k k

l

k

l
k l

q

q

=
+ − − − −

−

−

− −
− −

1

1

1 1 0
1 1

β β
δ

t
s

b
s s tl

k
k

l

k l k l l k

q

q q= + + − + +
−

− − − − −
1

1 1 1 1
0

1δ δ δ() ββ l−1

β δn
i

i

n
n

i
i

n
d b=

= =
∑ ∑,

0 0

t
s

b

s

b
d t

s

bl
k

k

l

k

i
i

i

l
k

k

iq

q

= + +

 + + +

−

=

−∑
1

0
0

1 dd

s

b

s

b

i
i l

l

k

l

k

i

q

q

= +

= +

−

− −

∑
1

1

1 1

ii

l k

ii l

l
k

i
i

lq

q

s

b
t d

=

−

=

−
−

=
∑ ∑+

 + + ()

0

1 1

0
1

0

−−
∑

1

t t
s

b
d

s

bl
k k

k

i
i

i

l k

l

q

q

= + +

+
=

−

∑0
0

1

++ −

+ +

+

−

= +
t t

s

b
dl

k
l
k

k

i
i

i l
q q

q

1
1

1

ll

l
k

k

l
l
k

l
kt

s

b
t t

s
q

q
q q

−

+
−

∑

= + + − +

1

1
1

kk

i
i

i l

l

k

l
l
k

b
d

s

b
t

s

q

q
q

+

= + +

= +

−

+
−

∑
1

1

1
1

kk

i
i

i l

l

b
d

q

+

= +

−
∑

1

1

t t
s

b
d t d tl

k k
k

i
i l

k
l l

k= + + + − −()

+

−
0 1

10max ,
ii

l

=

−
∑

0

1

q t d tl
k

l
k

l l
k= − −()+

−max ,0 1
1

t t
s

b
d ql

k k
k

i
i i

k

i

l
= + + +

=

−
∑0

0

1

n Figure 18. Packet dispersion (from the fluid analogy in [68]).
Here, ∆2 = max(∆1, L/C2) = L/C2 , ∆3 = max(∆2, L/C3) =
∆2.

∆1 ∆2 ∆3

15 nettimer can also work cooperatively as it implements other measure-
ment techniques.

IEEE Communications Surveys & Tutorials • Second Quarter 200516

sion delay on the next link. Then the smaller packet (the tail-
gater) queues continuously after the larger packet (the tailgat-
ed). The tailgated packet is dropped at a particular router due
to its TTL. The tailgater can then continue without queuing to
the destination (Fig. 17). To cope with ICMP limitation, Net-
timer introduces a new idea to measure the RTT to the desti-
nation by using the TCP FIN/RST mechanism: the tailgater is
a TCP FIN message to force the receiver to send back a TCP
RST message.

Note:
• The equations of the model are transformed to use RTTs

instead of one-way delays, assuming capacities are sym-
metric.

END-TO-END CAPACITY

End-to-end capacity can be determined using per-hop capacity
tools and by taking the minimum value of the capacities of the
links that compose the path. However, the packet-pair disper-
sion method can directly measure it. In this section we present
the packet-pair dispersion methodology, its implementations,
and its limitations.

Packet-Pair Dispersion Methodology — This method is
meant to show that two back-to-back packets (a packet-pair)
will be spread out in time when they arrive at the narrow link
(the “packet dispersion” phenomenon shown by Jacobson in
[68], Fig. 18). When two packets of size L arrive with a time
distance ∆in at a link i, assuming that no cross traffic will be
inserted between the packets, the output time distance is
then:

(21)

At the receiver, packet dispersion is:

(22)

∆R is measured by the receiver by time stamping the probe
packets upon reception. Then, the end-to-end capacity can be
calculated by the receiver as:

(23)

Packet-Pair Dispersion Implementations — bprobe [69],
sprobe [70], pathrate [71, 72], and nettimer [73] implement
the packet-pair dispersion technique:
• To work non-cooperatively, bprobe assumes that packet

dispersion remains constant when packets come back to
the sender. In this case, measurement is done with ICMP
Echo-Reply packets and the end-to-end capacity is mea-
sured by the sender. It assumes paths and links to be
symmetric.

•sprobe is able to measure the end-to-end capacity bidi-
rectionally (upstream and downstream) by exploiting
TCP protocol to generate packet-pairs (SYN and RST
messages, similar to the sting method). Then it is non-
cooperative.

•nettimer works cooperatively; the measurement is per-
formed passively by analyzing traffic traces (off-line
analysis).

Packet-Pair Dispersion Limitations — Packet loss, reorder-
ing, and the use of multichannel links [74] affect performances
of the packet-pair technique. Additionally, performances
depend on the size of probing packets, the presence of cross
traffic, and the minimal dispersion that the end-terminal is able
to measure. The main studies on this have been performed in
[72] and are summarized in the following three paragraphs.

Effect of Cross Traffic — Cross traffic affects measurement
quality. First, the packet-pair dispersion technique assumes
that no cross traffic is transmitted between probing packets.
However, it can happen. In this case, packet dispersion
increases and leads to underestimating the end-to-end capaci-
ty. Second, the first packet of the pair can be delayed more
than the second at a link that follows the narrow link due to
the presence of cross traffic in the queue. In this case, the dis-
persion decreases and the end-to-end capacity is overestimat-
ed. The authors in [72] have daemonstrated that these two
effects cause the distribution of packet-pair dispersion to be
multimodal: some modes correspond to underestimates of the
capacity (Sub-Capacity Dispersion Range (SCDR)), a mode
corresponds to the capacity (Capacity Mode (CM)), and oth-
ers are related to overestimates (Post-Narrow Capacity Mode
(PNCM)). Then to take into account the effect of cross traf-
fic, the measurement tools need to use filtering techniques:
• pathrate proceeds by sending packet-pairs and packet

trains. The packet-pair probing phase will obtain a “com-
plete” distribution that includes all kinds of modes
(SCDR, CM, and PNCM) while packet train probing
determines SCDR modes. Based on a heuristic rule,
pathrate selects which mode is the capacity mode (the
minimum mode of the first distribution that is greater
than the modes of the second).

• bprobe uses union/intersection statistical filtering to
select the capacity mode from different sets of measure-
ments.

• To eliminate measurement samples related to SCDR and
PNCM, nettimer makes the following observations. First,
packets that arrive with a higher bandwidth than they
were sent with correspond to the PNCM case. Those

C
L

R
=

∆

∆R
i H i

L

C
=

= …

max
1

∆ ∆out in
i

L

C
=

max ,

n Figure 20. pathload output [71].

metro2:/# ./pathload_rcv -s 193.50.39.11

Receiver metro2 starts measurements at sender
193.50.39.11 on Mon Jul 19 11:54:43 2004

Receiving Fleet 0, Rate 9.75 Mb/s
Receiving Fleet 1, Rate 4.88 Mb/s
Receiving Fleet 2, Rate 7.31 Mb/s
Receiving Fleet 3, Rate 8.52 Mb/s
Receiving Fleet 4, Rate 9.11 Mb/s
Receiving Fleet 5, Rate 8.81 Mb/s
Receiving Fleet 6, Rate 8.96 Mb/s

***** RESULT *****
Available bandwidth range : 8.93 - 9.11 (Mb/s)
Measurements finished at Mon Jul 19 11:55:18 2004
Measurement latency is 35.30 sec

n Figure 19. The probe rate model.

R

A

Probe packets

samples are easily discarded. Second, sam-
ples influenced by cross traffic (related to
SCDR and PNCM cases) do not tend to
correlate with each other (assuming that
cross traffic has random packet sizes and
arrives randomly at the links along the path).
nettimer then uses a kernel density estima-
tion method to determine which samples are more signif-
icant.

Probing Packet Size — The size of probing packets can
affect measuring. The consequence of a large packet size is to
increase the time interval in which a cross traffic packet can
interfere with the probing packets. At the same time, a packet
size that is too small is not ideal either. As L decreases, the
dispersion decreases and measurements are more sensitive to
the case in which the first packet has a longer delay than the
second. The empirical conclusion of [72] from internet experi-
ments is that a packet size of 800 bytes seems to be ideal.
Note, however, that in bprobe the authors argue that the opti-
mal size for probe packets is the maximum transmission unit
(MTU) and that nettimer cannot choose the probe packet size
because of passive measurements.

Minimal Measurable Dispersion — The range of measur-
able value is limited by the minimal dispersion that the end-
terminal is able to measure. This latter criterion depends on
time-related errors and uncertainties when receiving a packet.
The authors in [72] have shown that the minimal measurable
dispersion with SUN and PC under FreeBSD and Solaris is
30µs to 40µs. It can measure a maximal bandwidth of 160
Mb/s. Those values have been obtained for 800-byte probe
packets, which correspond to an optimal packet size according
to the authors. This constraint is mentioned in nettimer and
pipechar, though not in bprobe and sprobe.

AVAILABLE BANDWIDTH (LINKS/PATHS)

The techniques to measure the available bandwidth can be
classified into three categories: Packet Train Dispersion
(PTD), Probe Gap Model (PGM), and Probe Rate Model
(PRM). In addition, we present Multi Router Traffic Grapher
(MRTG), which is usually used as a reference for testing
available bandwidth measurement tools.

Packet Train Dispersion Methodology — The PTD is the
simplest technique proposed to measure available bandwidth.
It was introduced in [69]. It consists of sending N > 2 back-to-
back packets of size L (a packet train of length N) to the
receiver. The rate at which the N packets are sent must be
larger than the available bandwidth of the tight link. When
arriving at the receiver, one can measure the packet train dis-
persion ∆(N), i.e., the amount of time between the receipt of
the last bit of the first packet and the last bit of the last pack-
et. For a train of length N, the receiver measures ∆(N) and
estimates the available bandwidth A as follows:

(24)

Packet Train Dispersion Implementations — cprobe imple-
ments the PTD model [69].16 cprobe is non-cooperative: it

sends a short stream of ICMP echo packets to the target host
and assumes that it will respond by sending back ICMP Echo-
Reply packets. Then the sender measures the dispersion of the
ICMP Reply packets. Note that in this case, characteristics of
the reverse path and cross traffic may affect the results.

Packet Train Dispersion Limitations — Dovrolis et al. have
shown in [72] that formula 24 gives a metric called Asymptotic
Dispersion Range (ADR). The ADR metric is related to the
utilization of all links in the path. An absence of cross traffic
in the path means that ADR is equal to the end-to-end capac-
ity as with the packet-pair technique. In any other case, ADR
is not related to available bandwidth [20] and is difficult to
analyze [20, 72].

Probe Rate Model — The PRM model is based on the con-
cept of self-induced congestion. Assuming that FIFO queuing
occurs at all routers along the path, that cross traffic follows a
fluid model, and that changes of cross traffic rate are slow
[76], we can represent the network by a queue with a service
rate equal to the available bandwidth A (Fig. 19).

If a source sends probes to a destination through the
queue at a rate R less than A, probes will experience similar
delays. On the other hand, if R is greater than A, probes will
queue in the network and experience increasing delays. The
PRM model is thus based on the observation that the delays
of successive probing packets increase when the probing rate
exceeds the available bandwidth in the path.

The PRM model consists in probing the network at differ-
ent rates and detecting (at the destination) the point when
delays start to increase. At this point, probing rate is equal to
the available bandwidth.

Probe Rate Model Implementations — Pathload [60] and
PathChirp [77] implement the PRM model. These tools are
cooperative (Fig. 20).

Pathload introduces a technique based on Self Loading
Periodic Stream (SLoPS): the algorithm consists of sending a
stream of packets to the receiver. The receiver measures the
delay of each received packet and analyzes its variation. If the
delay is constant i.e. the stream rate is expected to be less
than the available bandwidth, another stream is sent to the
receiver at a greater rate. If the delay increases, i.e. the
stream rate is expected to be greater than the available band-
width, another stream is then sent to the receiver at a rate
between the two precedent values. This technique is repeated
and the algorithm converges by dichotomy to the available
bandwidth value. Due to its iterative nature, this algorithm
can have long convergence times [60, 78].

PathChirp proposes sending an exponentially spaced
“chirp” probing train (Fig. 21). The main advantage of this
approach is to minimize the probing traffic load. Indeed, a
single chirp is able to probe the network at different rates.
Moreover, using a chirp of n packets allows pathChirp to
exploit n – 1 packet spacings that would require 2n – 2 pack-
ets using a packet-pair technique.

Probe Rate Model Extensions — The Trains of Packet-Pairs
(TOPP) method mixes the PRM model and the packet-pair
probing technique [78]. It introduces a new metric, the propor-

A
N L

N
= −()

()

1

∆

IEEE Communications Surveys & Tutorials • Second Quarter 2005 17

n Figure 21. Chirp probe train.

Tγ N-2 Tγ 2 Tγ T Time

1 2 n-3 n-2 n-1 n

16 The tool pipechar [75] is often classified as a PTD tool [21, 76]. How-
ever, the article describing it does not clearly explain its measurement
methodology.

IEEE Communications Surveys & Tutorials • Second Quarter 200518

tional share f, and uses it to evaluate available bandwidth. Pro-
portional share is defined as the share of the link bandwidth
that a new connection (with an offered load, or rate o) will
obtain on that link:

(25)

This definition makes the strong assumption that routers
share their bandwidth using proportional stateless scheduling
policy (First Come First Serve (FCFS), for example) and use
a random dropping policy of packets at buffer overflow. At
the node i, given a sender rate of o0 = o, the connection will
obtain the following proportional share bandwidth:

(26)

The rate at the receiver will be f = on and will represent
the bandwidth experienced by the probe packets. The mea-
surement method consists of sending a set of n separated
pairs of equally sized packets L (a train of packet pairs)
starting at some rate omin. The probing rate o is then
increased and another train is sent. This goes on until o
reaches some rate omax. According to Eq. 26, the measured
rate at the destination will be f = on = o until o reaches the
available bandwidth A. Thereafter, f = on will correspond to
the proportional share bandwidth at the tight link (link j
such as Aj = A). It is then possible to detect the rate o which
is equal to the available bandwidth A. This technique implies
that the destination measures the experienced bandwidth f.
It is estimated as:

(27)

Notes:
• TOPP has only been simulated using ns-2; no implemen-

tation is available.
• TOPP is not limited to the estimation of the path avail-

able bandwidth. It is also able to measure available band-
width and capacity of every link on the path. However,
these latter measurements are prone to error because
TOPP assumes that links are in Smallest Surplus First
order (SSF), which means that for every i < j ≤ H, Ai <
Aj.

Probe Gap Model — The PGM model consists in capturing
the relationship between the dispersion of a packet-pair and
the rate of cross traffic at the bottleneck link of a path (Fig.
22). The PGM makes the same assumptions that the PRM
makes, and also assumes that the bottleneck link is both the
tight link and the narrow link.

The authors in [79] have shown that the packet-pair disper-
sion increases linearly with the cross traffic rate if the queue
of the bottleneck router does not become empty after the first

packet of the pair leaves the router and before
the second packet arrives at the router (Joint
Queuing Region (JQR) condition):

(28)

where ∆in is the initial gap, ∆out the output gap, L
the size of the probe packets, (L/C) the time to
process the first packet, and (CT∆in/C) the time to

process the cross traffic that arrives between the two probe pack-
ets. The rate of the cross traffic at the bottleneck link is thus:

(29)

Then, assuming that the end-to-end capacity C is known (or
measured) and determining the cross traffic rate at the bottle-
neck, CT can simply calculate the available bandwidth of the
path A = C – CT.

Probe Gap Model Implementations — The PGM method
is implemented in Initial Gap Increasing (IGI) [79] and
spruce [76]. These tools are cooperative. IGI uses packet
trains, i.e. a longer sequence of evenly spaced packets to
probe the network. In this case, packet-pairs that compose a
train are not independent. If a packet-pair is composed of
packets Pk and Pk+1, the next packet-pair will be composed of
packets Pk+1 and Pk+2. In other words, the ∆out’s are correlat-
ed. To deal with this, IGI bases its calculations on ∆out sam-
ples that are greater than ∆in.

To ensure that it operates under the JQR condition and
does not flood the bottleneck, IGI adjusts the time distance in
based on the following observations:
• ∆in should be smaller than (or equal to) the transmission

time of a probe packet at the bottleneck to ensure that
the queue of the bottleneck router does not become
empty after the first packet of the pair leaves the router
and before the second packet arrives at the router.

• Too small of a ∆in will flood the bottleneck. In this case,
probe packets and cross traffic will not properly inter-
leave, resulting in underestimating the cross traffic rate.
Experiments carried out in [79] have shown that the opti-

mal initial gap is obtained when the average output gap
equals the initial gap. IGI starts by sending packet-pairs with
a small ∆ in and increases it until the average output gap
equals the initial gap.

Notes:
• To improve dispersion measurement precision, IGI uses

kernel-level timestamping.17

• IGI starts its execution by measuring the end-to-end
capacity (similar to nettimer).
To cope with packet-pair dependence, spruce sends a Pois-

son process of packet-pairs. Additionally, spruce adjusts the
average inter-pair gap to ensure that the probe rate is a mini-
mum of 240 Kb/s and five percent of the end-to-end capacity.
To ensure that it operates under the JQR condition, spruce
sets the time distance ∆in to the transmission time of a 1500-
byte data packet at the bottleneck.18

C
C L

T
out

in
=

−∆
∆

∆
∆

out
T inL C

C
=

+

%f
L

T
T=

∆
∆with the time distance between

 packets at the destination

o

o o A

o

C u o
C o Ai

i i i

i

i i i
i i i

=
<

+
≥

 − −

−

−
−

1 1

1

1
1

if

if

f
o

C u o
C

i i
i=

+

17 Timestamping operations are performed at the kernel level in the root
version of IGI, and at the application layer in the normal version.

18 The rate of the cross traffic at the bottleneck link is then

C CT
out in

in
=

−∆ ∆
∆

n Figure 22. Probe gap model.

RouterCross traffic

P2 P1
P2 P1

∆ in
∆ out

IEEE Communications Surveys & Tutorials • Second Quarter 2005 19

Notes:
• To improve dispersion measurement precision, spruce

uses kernel-level timestamping.
• The path capacity C is specified by the user when starting

the spruce sender.
According to their authors, spruce and IGI give relatively

accurate results even if the PGM assumptions are not met.
Moreover, these techniques give results much faster than
pathload. (Measurement times of spruce and IGI are similar,
approximately 10 seconds.)

Multi Router Traffic Grapher — MRTG [80] is a program
that uses SNMP to read the load of routers (traffic counters).
Given the capacity of a link, it is then possible to calculate its
available bandwidth (capacity minus its load). MRTG gener-
ates HTML pages containing images, which provide a repre-
sentation of the traffic bitrate (Fig. 23). Due to its
implementation, MRTG does not offer a measurement granu-
larity smaller than five minutes. To determine the available
bandwidth between two end-points, it is necessary to identify
all the routers of the path and to have permission to read
their MIBs (read-only access). The authors in [81] propose
MRTG++, a patched version of MRTG that improves its
granularity down to 10s. The authors present Available Band-
width Estimator (ABEst), which is a tool that obtains infor-
mation about link capacity and utilization within an
autonomous system (AS) from routers. ABEst computes lin-
ear predictions of available bandwidth for each link. Predic-
tion can limit the amount of data collected and reduce the
signaling traffic and router load. One limitation of ABEst is
that it requires routers to modify probing packets with SNMP
data.

The measurement of available bandwidth is currently
under discussion at the IPPM. A recent draft [82] proposes a
technique based on a measurement of the TCP congestion
window. This technique is not intrusive. Furthermore, the
draft proposes a prediction algorithm to predict values of the
available bandwidth. This prediction algorithm is the same as
in ABEst.

BULK-TRANSFER-CAPACITY

Definition — The BTC (Bulk-Transfer-Capacity or Bulk-
Transport-Capacity) represents the achievable throughput by
a TCP connection on the end-to-end path. The IPPM propos-
es a framework for defining BTC metrics [83] in which the
following BTC definition is given: Bulk-Transport-Capacity is a
measure of a network’s ability to transfer significant quantities of
data with a single congestion-aware transport connection (e.g.,
TCP19). The intuitive definition of BTC is the expected long time
average data rate of a single ideal TCP implementation over the
path in question:

(30)

Several TCP distributions are in use today
(Tahoe, Reno, etc.) and implement in various
way the congestion control algorithms published
in [68] and [84]. A BTC measurement methodol-
ogy should theoretically define which TCP imple-
mentation it works for.

Measurement Methodology and Tools — The best known
tool that measures BTC is TReno [28] (“Traceroute Reno”),
which emulates TCP (Reno) using UDP packets. Like
pathchar and traceroute, it exploits the TTL field to force the
target host to send back messages that it uses to simulate TCP
ACKs. It is thus non-cooperative.

Iperf [85] is another tool to measure BTC. It was initially
designed to provide TCP connection statistics for helping
users to tune TCP window sizes. It works by establishing a
TCP connection and trying to transmit data as quickly as pos-
sible. Iperf uses the TCP implementation of the operating sys-
tem that the host is running, and it is cooperative.

INTRUSIVENESS/INVASIVENESS

A very common question in measurement is the skew of the
real value introduced by the measurement technique itself.
This is especially true in the case of active measurements
done in running systems. The property of a tool related to
the amount of traffic it puts in the network is called intrusive-
ness (or invasiveness). Intrusiveness depends on the level of
traffic generated by the tool. This traffic depends on the tool
used and particularly on the measured parameter: tools mea-
suring one-way delay or round-trip time generate few pack-
ets, so they are not intrusive except if the bandwidth is small.
Measurement of packet loss and packet reordering cannot
give objective results without sending a significant number of
packets in real traffic conditions, so this is more intrusive.
These types of active measurements are done during test
periods. During the operating period the corresponding
parameters can be obtained by passive measurements. Prasad
et al. [20], who studied intrusiveness of bandwidth estimation
tools, claimed that “an active measurement tool is intrusive
when its average probing traffic during the measurement process
is significant compared to the available bandwidth in the path.”
They analyzed the impact of three types of tools: Packet
Pair/Train Dispersion (PPTD), BTC, and one-packet tools.
PPTD tools create short traffic bursts at high rates; however,
these bursts last for only a few milliseconds and are separat-
ed by long time intervals. The average probing rate using
pathload is typically less than 10 percent of the available
bandwidth. It should be noted, however, that due to long
range dependence (LRD) [86] there remain perturbations in
the normal running after stopping the stress of the network.
BTC measurement tools are classified as intrusive because
they fulfill all the available bandwidth during the measure-
ments, even if they use TCP, thus controlling congestion.
One-packet tools seem less intrusive in long distance paths
because there is only one packet per round-trip.

It is a fact that using active measurement tools results in
intrusiveness problems in network traffic. Nowadays it is only
defined qualitatively. Further research must be done in order
to define a metric of intrusiveness and to quantify it. More
generally, the key challenge in active measurement is to send
a minimal amount of traffic to the network and to obtain the
most accurate measurements possible.

BTC
data sent

elapsed time
= _

_

n Figure 23. MRTG output.

40.0 M

Bi
ts

 p
er

 s
ec

on
d

80.0 M

120.0 M

160.0 M

0.0 M
10 12 14864202220181614121086

Output traffic

Input traffic

19 Note that BTC metrics can be defined for other transport protocols than
TCP.

IEEE Communications Surveys & Tutorials • Second Quarter 200520

CONCLUSION

Packet-switched communication network metrology is a rela-
tively new field of research. However, several techniques and
tools have already been proposed to perform measurements.
The purpose of this article was to review application-oriented
network metrology techniques and tools. The network param-
eters concerned were one-way delay, delay variation, round-
trip time, packet loss, packet reordering, route. and
bandwidth. A summary of their related measurement tools
and IETF metrics is presented in Table 1. We have shown
that the IPPM group of the IETF has proposed standard defi-
nitions for some parameters and is still working on the stan-
dardization of others. Nevertheless, existing measurement
tools seldom conform to IPPM recommendations.

Table 2 summarizes measurement tool characteristics, and
shows previous tool limitations. Each existing measurement
tool is often dedicated to the measurement of a single param-
eter. Therefore, it is difficult to measure different parameters
between two end-systems at the same time. The measurement
tools almost always enable measurements to be carried out in
only one way between two end-systems. Bidirectional mea-
surements would require tools to be installed and parameter-
ized, the execution to be started, and the results to be logged
onto the two sites. In this context, we believe that work such
as OWAMP or the metrology service proposed in [89] repre-
sent a great advance in proposing frameworks to “standard-
ize” and integrate active measurement tools.

Additional research must be done in the network metrolo-
gy community. Although this science has been around for a
decade, it is now becoming a key issue due to the importance
of verifying SLA. Consequently, improvements must be made.
For the time being, no reference tool is available to validate
or to compare existing tools. Existing tools are not capable of
quantifying measurement uncertainties. Only when advance-
ments are made on these tools will we then be able to quanti-
fy the errors. In this sense, guidelines must also be defined for

measurement tool test and calibration. Finally, intrusiveness,
i.e. perturbation induced by active measurement, is still an
open issue. To date, no measurement traffic limitation rule
has been established.

ACKNOWLEDGMENTS

We would like to thank the anonymous referees for their
many constructive comments.

REFERENCES
[1] V. Paxson, “Measurements and Analysis of End-to-end Internet

Dynamics,” Ph.D. dissertation, Computer Science Division, Uni-
versity of California, Berkeley, and Information and Computing
Sciences Division, Lawrence Berkeley National Laboratory, Uni-
versity of California, Apr. 1997.

[2] The Surveyor Website, Available: http://www.advanced.org/sur-
veyor

[3] The National Internet Measurement Infrastructure (NIMI) Web-
site, available at http://www.ncne.nlanr.net/nimi

[4] V. Paxson et al., “An Architecture for Large-scale Internet Mea-
surement,” IEEE Commun. Mag., vol. 36, no. 8, 1998, pp.
48–4.

[5] V. Paxson, A. Adams, and M. Mathis, “Experiences with NIMI,”
Proc. Passive and Active Measurements (PAM) Wksp., 2000.

[6] The Réseaux IP Européens (RIPE) Web site, available at:
http://www.ripe.net

[7] The Netsizer Web site, available at: http://www.netsizer.com
[8] The Cooperative Association for Internet Data Analysis (CAIDA)

Web site, available at: http://www.caida.org/
[9] C. Fraleigh et al. “Design and Deployment of a Passive Moni-

toring Infrastructure,” Proc. Passive and Active Measurements
(PAM) Wksp., 2001.

[10] Réseaux National de Recherche en Télécommunications.
(2001) METROlogie Pour l’Internet et ses Services (METROPO-
LIS), available at: http://www.telecom.gouv.fr/rnrt/, http://www-
rp.lip6.fr/metrologie

[11] P. Owezarski, “IP Network Monitoring and Measurements:
Techniques and Experiences (Tutorial),” Int’l. Wksps. on Inter-

n Table 1. Summary of QoS parameters, related tools, IETF metrics, and additional information.

Measurement tools IETF metrics Additional information

Per-hop capacity pathchar [62], bing [65], clink [66],
pchar [64], nettimer [67] [39, 66]

Available bandwidth
cprobe [69], pipechar [75],
pathload [60, 87], TOPP [78],
pathChirp [77], spruce [76], IGI/PTR [79]

Internet draft [82]

End-to-end capacity bprobe [69], pathrate [71, 72],
nettimer [73], sprobe [70] [1]

Bulk transfer capacity Iperf [85], TReno [28] [83]

One-way delay owping/owampd [25], QoSMet [26] RFC 2679 [33] [1, 35, 39, 88]

One-way delay variation Iperf [85], QoSMet [26] RFC 3393 [40] [42]

Round-trip time ping RFC 2681 [43] [35]

Packet loss ping, sting [47], owping/owampd [25],
Iperf [85], QoSMet [26]

RFC 2680 [44],
RFC 3357 [46] [35]

Packet reordering sting [47, 49], owping/owampd [25],
QoSMet [26]

Internet draft [48],
Internet draft [58] [50]

Route traceroute [29] [1]

IEEE Communications Surveys & Tutorials • Second Quarter 2005 21

active Distributed Multimedia Systems and Protocols for Multi-
media Systems (IDMS/PROMS’2002), Coimbra, Portugal, Nov.
2002.

[12] The Tcpdump and Libpcap Web site, available at:
http://www.tcpdump.org

[13] X. Wang and H. Schulzrinne, “Comparison of Adaptive Inter-
net Multimedia Applications,” Institute of Elec., Info. and Com-
mun. Engineers (IEICE) Trans. Commun., vol. E82-B, June 1999,
pp. 806–18.

[14] V. Bharghavan and V. Gupta, “A Framework for Application
Adaptation in Mobile Computing Environments,” Proc. IEEE
Compsac’97, Nov. 1997, available at: http://citeseer.nj.nec.com/
bharghavan97framework.html

[15] P. Keleher, J. K. Hollingsworth, and D. Perkovic, “Exposing
Application Alternatives,” Proc. IEEE Int’l. Conf. Distributed
Comp. Sys., 1999, pp. 384–92.

[16] S. N. Bhatti and G. Knight, “Enabling QoS Adaptation Deci-
sions for Internet Applications,” Comp. Net., vol. 31, 1999, pp.
669–92.

[17] A. Friday et al., “Developing Adaptative Applications: The
MOST Experience,” Integrated Computer-Aided Engineering,
vol. 6, no. 2, 1999, pp. 143–57.

[18] G. Blair et al., “A Principled Approach to Supporting Adapta-
tion in Distributed Mobile Environments,” Proc. 5th IEEE Int’l.
Symp. Software Engineering for Parallel and Distributed Sys-
tems (PDSE-2000), June 2000.

[19] F. Michaut and F. Lepage, “A QoS architecture for application
execution adaptation,” Proc. 3rd ACIS Int’l. Conf. Software
Eng., Artificial Intelligence, Net. and Parallel/Distributed Comp.
(SNPD’02), June 2002.

[20] R. S. Prasad et al., “Bandwidth Estimation: Metrics, Measure-
ment Techniques, and Tools,” IEEE Network, Nov. 2003.

[21] R. Prasad, C. Dovrolis, and B. Mah, “The Effect of Layer-2
Store-and-Forward Devices on Per-Hop Capacity Estimation,”
Proc. IEEE Infocom, San Francisco, USA, Apr. 2003.

[22] V. Paxson et al., “Framework for IP Performance Metrics, RFC
2330,” May 1998.

[23] V. Raisanen, G. Grotefeld, and A. Morton, “Network Performance
Measurement for Periodic Streams, RFC 3432,” Nov. 2002.

[24] S. Shalunov et al., “A One-Way Active Measurement Protocol
(OWAMP), Internet Draft, Work in Progress,” 2004.

[25] owping/owampd: An Implementation of the One-Way Active
Measurement Protocol, available at: http://e2epi.internet2.edu/
owamp/

n Table 2. Measurement tool characteristics (continued on next page).

Tools Per-hop
capacity

Available
bandwidth

End-to-end
capacity

Bulk-Transfer-
capacity

One-way
delay

One-way
delay var.

Round-trip
time

bing u

bprobe u

clink u

cprobe u

IGI u

Iperf b b (UDP)

nettimer u u/b

owping b

pathchar u

pathChirp u

pathload u

pathrate u

pchar u

ping u/rt

pipechar/NCS u u

QoSMet b b

sprobe b

spruce u

sting

traceroute

TReno u

IEEE Communications Surveys & Tutorials • Second Quarter 200522

[26] F. Michaut, “QoSMet, a Quality of Service Measurement
Tool,” 2004, available at: http://michaut.valerie.free.fr/
qosmet

[27] A. Adams and M. Mathis, “A System for Flexible Network
Performance Measurement,” Japan, 2000.

[28] M. Mathis and J. Mahdavi, “Diagnosing Internet Congestion
with a Transport Layer Performance Tool,” Proc. INET’96, Mon-
treal, QC, June 1996.

[29] V. Jacobson, Traceroute, available at: hftp://ftp.ee.lbl.
gov/traceroute.tar.gze

[30] The Multicast-based Inference of Network-internal Character-
istics (MINC) Web site, available at: http://www-net.cs.
umass.edu/ minc/

[31] A. Adams et al., “The Use of End-to-end Multicast Measure-
ments for Characterizing Internet Network Behavior,” IEEE
Commun. Mag., vol. 38, no. 5, May 2000.

[32] D. V. A. Pasztor, “A Precision Infrastructure for Active Probing,”
Proc. Passive and Active Measurements (PAM) Wksp., 2001.

[33] G. Almes, S. Kalidindi, and M. Zekauskas, “A One-Way Delay
Metric for IPPM, RFC 2679,” Sept. 1999.

[34] D. L. Mills, “Internet Time Synchronization: The Network Time
Protocol,” IEEE Trans. Commun., vol. 39, no. 10, Oct. 1991,
pp. 1482–93.

[35] W. Jiang and H. Schulzrinne, “QoS Measurement of Internet
Real-Time Multimedia Services,” Columbia University, New
York, Tech. Rep. CUCS015-99, Dec. 1999.

n Table 2. Measurement tool characteristics.

Tools Packet loss Packet
re-ordering Route Measurement

class Environment Protocol Operating
sytem

bing a nc ICMP Most Unix

bprobe a nc ICMP SGI Irix

clink a nc ICMP Most Unix

cprobe a nc ICMP SGI Irix

IGI a c UDP Most Unix

Iperf b UDP) a c TCP, UDP Most OS

nettimer a/p c/nc TCP Linux

owping b b a c UDP Linux

pathchar a nc UDP Most Unix

pathChirp a c UDP Most Unix

pathload a c UDP Most Unix

pathrate a c UDP Most Unix

pchar a nc ICMP Most Unix

ping u/rt a nc ICMP Most OS

pipechar/NCS a nc ICMP Most Unix

QoSMet b b a c UDP Linux

sprobe a nc TCP FreeBSD
Linux

spruce a c UDP most Unix

sting b b a nc TCP FreeBSD
Linux

traceroute u a nc UDP, ICMP most OS

TReno a nc UDP, ICMP most Unix

Measured parameters. u: unidirectional (measurements are made from source to destination); b: bidirectional (measurements are
made from source to destination or from destination to source); u/rt: unidrectional and round-trip (measurements are made for
“source-destination-source” path only).
Measurement class. a: active; p: passive.
Tool type. c: cooperative; nc: non-cooperative.

IEEE Communications Surveys & Tutorials • Second Quarter 2005 23

[36] D. Mills, “Network Time Protocol (Version 3), Specification,
Implementation and Analysis, Request For Comments RFC
1305,” Mar. 1992.

[37] __, “Simple Network Time Protocol (SNTP) Version 4 for
IPv4, IPv6 and OSI, Request For Comments RFC 2030,” Oct.
1996.

[38] A. Pasztor and D. Veitch, “PC Based Precision Timing Without
GPS,” Proc. ACM SIGMETRICS’02, 2002.

[39] W. Jiang and T. F. Williams, “Detecting and Measuring Asym-
metric Links in an IP Network,” Proc. GlobeComm Global Inter-
net 1999, 1999.

[40] C. Demichelis and P. Chimento, “IP Packet Delay Variation
Metric for IPPM, RFC 3393,” Nov. 2002.

[41] H. Schulzrinne et al., “RTP: A Transport Protocol for Real-Time
Applications, Request For Comments RFC 1889,” Jan. 1996.

[42] A. Hafid and G. von Bochmann, “Quality-of-Service Adapta-
tion in Distributed Multimedia Applications,” Multimedia Sys-
tems, vol. 6, no. 5, 1998, pp. 299–315.

[43] G. Almes, S. Kalidindi, and M. Zekauskas, “A Round-trip
Delay Metric for IPPM, RFC 2681,” Sept. 1999.

[44] __, “A One-Way Packet Loss Metric for IPPM, RFC 2680,”
Sept. 1999.

[45] M. S. Borella and D. Swider, “Internet Packet Loss: Measure-
ment and Implications for End to End QoS,” Proc. ICPP Wksps.
Architectural and OS Support for Multimedia Applications/Flex-
ible Commun. Sys./Wireless Net. and Mobile Comp., 1998.

[46] R. Koodli and R. Ravikanth, “One-way Loss Pattern Sample
Metrics, RFC 3357,” Aug. 2002.

[47] S. Savage, “Sting: A TCP-based Network Measurement Tool,”
Proc. USENIX Symp. Internet Tech. and Sys., Boulder, USA, Oct.
1999, pp. 71–79.

[48] A. Morton et al., “Packet Reordering Metric for IPPM, Inter-
net Draft, Work in Progress,” 2004.

[49] J. Bellardo and S. Savage, “Measuring Packet Reordering,”
Proc. ACM SIGCOMM Internet Measurement Wksp., Marseille,
France, Nov. 2002.

[50] J. C.-R. Bennett, C. Partridge, and N. Shectman, “Packet
Reordering is not Pathological Network Behavior,” IEEE Trans.
Net., vol. 7, no. 6, Dec. 1999, pp. 789–98.

[51] S. Jaiswal et al., “Measurement and classification of Out-of-
Sequence Packets in a Tier-1 IP Backbone,” Proc. ACM/SIG-
COMM Internet Measurement Wksp., Marseille, France, Nov.
2002.

[52] E. Blanton and M. Allman, “On Making TCP More Robust to
Packet Reordering,” ACM Comp. Commun. Rev., vol. 32, no. 1, 2002.

[53] M. Zhang et al., “Improving TCP Performance under Reorder-
ing with DSACK,” Int’l. Comp. Science Institute, Tech. Rep. TR-
02-006, July 2002.

[54] P. Amer et al., “Partially-Ordered, Partially-Reliable Transport
Service for Multimedia Applications,” Proc. 1st ARLA/ATIRP
Conf., MD, USA, Jan. 1997.

[55] P. Berthou et al., “Partial Ordered and Reliable Multimedia
Transport Protocol for Satellite Communications,” Proc. 5th
European Conf. Satellite Commun. (ESCSC-5), Toulouse,
France, Nov. 1999.

[56] V. Lecuire, F. Lepage, and K. Kammoun, “Enhancing Quality
of MPEG Video through Partially Reliable Transport Service in
Interactive Application,” Proc. 4th IFIP/IEEE Int’l. Conf. Man-
agement of Multimedia Net. and Services (MMNS’2001),
Chicago, USA, Oct. 2001.

[57] V. Paxson, “End-to-end Routing Behavior in the Internet,”
Proc. ACM SIGCOMM’96, Stanford, USA, Oct. 1996, pp. 25-39.

[58] A. Jayasumana et al., “Reorder Density Function — A Metric
for Packet Reordering Measurement, Internet Draft, Work in
Progress,” 2003.

[59] M. Mathis et al., “TCP Selective Acknowledgment Options,
Request For Comments RFC 2018,” Oct. 1996.

[60] M. Jain and C. Dovrolis, “Pathload: A Measurement Tool for
Available Bandwidth Estimation,” Proc. Passive and Active
Measurements (PAM) Wksp., 2002, available at: http://www.
pathrate.org

[61] A. Pasztor and D. Veitch, “Active probing using packet quar-
tets,” Proc. ACM/SIGCOMM Internet Measurement Wksp., Mar-
seille, France, Nov. 2002, available at: http://www.icir.org/
vern/imw-2002/

[62] V. Jacobson, “Pathchar, a Tool to Infer Characteristics of
Internet Paths,” Apr. 1997, available at: ftp://ftp.ee.lbl.gov/
pathchar/ msri-talk.pdf

[63] S. Bellovin, “A Best-Case Network Performance Model,” ATT
Research, Tech. Rep., Feb. 1992.

[64] The Pchar Web site, available at: http://employees.org/~
bmah/Software/pchar

[65] P. Beyssac, (1995) BING, a Bandwidth Measurement Tool
based on pING, available at: http://www.cnam.fr/reseau/
bing.html

[66] A. B. Downey, “Using Pathchar to Estimate Internet Link
Characteristics,” Proc. ACM SIGCOMM Conf. Applications,
Tech., Architectures, and Protocols for Comp. Commun., 1999,
pp. 222–23.

[67] K. Lai and M. Baker, “Measuring Link Bandwidths using a
Deterministic Model of Packet Delay,” Proc. ACM SIGCOMM
Conf. Applications, Technologies, Architectures, and Protocols
for Comp. Commun., Stockholm, Sweden, 2000.

[68] V. Jacobson, “Congestion Avoidance and Control,” Proc.
ACM SIGCOMM Symp. Commun. Architectures and Protocols,
Aug. 1988, pp. 314–29.

[69] R. Carter and M. Crovella, “Measuring Bottleneck Link Speed
in Packet-switched Networks,” Boston University, Tech. Rep.
1996-006, Mar. 1996, available at: http://citeseer.nj.nec.com/
carter96measuring.html

[70] S. Saroiu, (2001) SProbe: A Fast Tool for Measuring Bottle-
neck Bandwidth in Uncooperative Environments, available at:
http://sprobe.cs.washington.edu

[71] C. Dovrolis, The Pathrate and Pathload Web site, available at:
http://www.pathrate.org

[72] C. Dovrolis, P. Ramanathan, and D. Moore, “What Do Packet
Dispersion Techniques Measure?” Proc. INFOCOM, Apr. 2001,
pp. 905–14.

[73] K. Lai and M. Baker, “Nettimer: A Tool for Measuring Bottle-
neck Link Bandwidth,” Proc. USENIX Symp. Internet Tech. and
Sys., San Francisco, USA, Mar. 2001.

[74] V. Paxson, “End-to-end Internet Packet Dynamics,” IEEE/ACM
Trans. Net., vol. 7, no. 3, 1997, pp. 277–92.

[75] G. Jin et al., “Network Characterization Service (NCS),” Proc. 10th
IEEE Symp. High Performance Distributed Comp., Aug. 2001.

[76] J. Strauss, D. Katabi, and F. Kaashoek, “A Measurement
Study of Available Bandwidth Estimation Tools,” Proc. Internet
Measurements Conf., 2003.

[77] V. Ribeiro et al., “pathchirp: Efficient Available Bandwidth
Estimation for Network Paths,” Proc. Passive and Active Mea-
surements (PAM) Wksp., 2003.

[78] B. Melander, M. Bjorkman, and P. Gunningberg, “A New End-
to-End Probing and Analysis Method for Estimating Bandwidth
Bottlenecks,” Proc. GlobeComm Global Internet Symp., 2000.

[79] N. Hu and P. Steenkiste, “Evaluation and Characterization of
Available Bandwidth Probing Techniques,” IEEE JSAC, vol. 21,
no. 6, Aug. 2003.

[80] T. Oetiker and D. Rand, The Multi Router Traffic Grapher
(MRTG) Web site, available at: http://www.people.ee.ethz.ch/
~oetiker/webtools/mrtg

[81] T. Anjali et al., “ABEst: An Available Bandwidth Estimator
within an Autonomous System,” Proc. IEEE Globecom, 2002.

[82] T. Anjali et al., “Available Bandwidth Measurement in IP Net-
works, Internet Draft, Work in Progress.”

[83] M. Mathis and M. Allman, “A Framework for Defining Empiri-
cal Bulk Transfer Capacity Metrics, Request For Comments RFC
3148,” July 2001.

[84] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion Con-
trol, Request For Comments RFC 2581,” Apr. 1999.

[85] The Iperf Web site, available at: http://dast.nlanr.net/
Projects/Iperf

[86] P. Owezarski and N. Larrieu, “Internet Traffic Characterization
— An Analysis of Traffic Oscillations,” Proc. 7th IEEE Int’l.
Conf. High Speed Networks and Multimedia Commun. (HSNMC
2004), Toulouse, France, June 2004.

[87] M. Jain and C. Dovrolis, “End-to-End Available BW Measure-
ment Methodology, Dynamics, and Relation with TCP Through-
put,” Proc. ACM SIGCOMM Conf., 2002.

[88] V. Paxson, “On Calibrating Measurements of Packet Transit
Times,” Proc. ACM SIGMETRICS’98, 1998.

IEEE Communications Surveys & Tutorials • Second Quarter 200524

[89] F. Michaut and F. Lepage, “A Tool to Monitor the Network
Quality of Service,” Proc. IFIP-IEEE Conf. Network Control and
Eng. (NET-CON’2002), Oct. 2002.

BIOGRAPHIES
FABIEN MICHAUT (fabien.michaut@cran.uhp-nancy.fr) received his
engineer degree at the ESSTIN Engineering School, France, in
1999, and his Ph.D. at Henri Poincaré University in Nancy, France,
in 2003. He is currently a lecturer at Henri Poincaré University of
Nancy. His recent research work has focused on adaptation of dis-
tributed applications to communication network Quality of Ser-
vice (QoS) and QoS metrology.

FRANCIS LEPAGE (francis.lepage@cran.uhp-nancy.fr) is a full profes-
sor at Henri Poincaré University in Nancy, France. He received his
Ph.D. in 1976 and his Doctor es Sciences degree in 1986 at the
University of Nancy. His research interest is in critical real-time
controlled systems, especially real-time constrained communica-
tion networks. He has supervised 17 Ph.D. theses and is the
author or co-author of four books and approximately 100 publi-
cations.

