
IEEE Communications Magazine • April 201342 0163-6804/13/$25.00 © 2013 IEEE

BACKGROUND, RATIONALE, AND
MOTIVATION

Real-time voice and video communication within
browsers is among the topics currently gaining
momentum in the two main Internet standard-
ization bodies, the Internet Engineering Task
Force (IETF) and the World Wide Web Consor-
tium (W3C).

The vision of these two bodies is to standard-
ize an open framework enabling seamless brows-
er-to-browser multimedia applications [1]. This
approach represents a real revolution in the
world of telecommunications and actually forces
us to consider as “legacy” a number of applica-
tions and systems that have come to light in the
recent past and have been based on telecommu-
nication standards not envisaging the browser
among the set of supported end devices. Among
such “legacy” frameworks, real-time Session Ini-
tiation Protocol (SIP)-based architectures defi-
nitely play a major role, having represented the
most widespread solution for real-time communi-
cation over the Internet. While the ongoing work

on peer-to-peer browser-enabled communica-
tions is far from complete, there is also a clear
need for solutions aimed at the seamless interac-
tion between the huge basis of incumbent SIP
solutions and the upcoming products and tech-
nologies embracing the newly defined standards.

The focus of this work is on the interoperabil-
ity issues that have to be faced when trying to let
the legacy SIP world and the envisaged browser-
to-browser scenarios seamlessly interoperate. We
identify the major issues that arise when the end-
to-end principle is broken due to the presence of
an intermediary, as in the case of a conferencing
system relying on a central server in charge of
orchestrating the communication among all
involved clients. We then discuss potential
approaches to the solution of the identified chal-
lenges and present the results of our engineering
activities aimed at the implementation of an inte-
grated architecture capable of supporting both
legacy client devices and browsers equipped with
the newly defined real-time capabilities.

The remainder of the article is organized as
follows. We briefly describe the main standard-
ization activities in the field of web-enabled real-
time communications. A section is devoted to
the identification of the issues that must be
faced when communication involves some sort of
intermediaries. Another section contains the
core of our contribution, since it focuses on
Meetecho RTCWebLite, our proposal for a
solution aimed at the coexistence of legacy SIP-
based architectures with real-time web-enabled
clients. Related works are presented and ana-
lyzed briefly. Finally, we conclude the article by
introducing final remarks as well as providing
some pointers to open issues and related direc-
tions of future investigation.

REAL-TIME COMMUNICATIONS IN
THE WEB: A STANDARDS

PERSPECTIVE

The IETF and W3C are interested in different
yet complementary facets of the general issue of
real-time communication in the web. On one

ABSTRACT

The growing interest in integrating interactive
multimedia features into web applications has
recently led to the creation of the W3C
WebRTC and the IETF RTCWEB working
groups. Such groups are jointly defining both the
application programming interfaces and the
underlying communication protocols for the
setup and management of a reliable communica-
tion path between any pair of next-generation
web browsers. While the ongoing work is focus-
ing on peer-to-peer communication between
browsers, engineers are also facing a new issue,
associated with the coexistence of legacy SIP-
based systems with the upcoming browser-
enabled architectures. We herein discuss how we
tackled such an issue, by first identifying interop-
erability requirements and then presenting a
real-world interoperability example dealing with
the integration of RTCWEB clients into an
existing standards-based collaboration platform.

WEB-BASED COMMUNICATIONS

Alessandro Amirante, Meetecho S.r.l.

Tobia Castaldi, Lorenzo Miniero, and Simon Pietro Romano, University of Napoli Federico II

On the Seamless Interaction between
WebRTC Browsers and
SIP-Based Conferencing Systems

ROMANO LAYOUT_Layout 1 4/1/13 1:23 PM Page 42

Authorized licensed use limited to: National Chi Nan University. Downloaded on January 07,2023 at 14:15:56 UTC from IEEE Xplore. Restrictions apply.

solomon
Highlight

solomon
Highlight

solomon
Typewriter
設想

solomon
Underline

solomon
Highlight

IEEE Communications Magazine • April 2013 43

hand, the IETF community is looking into issues
like the identification and definition of network-
related aspects, including control protocols, con-
nection establishment, and management, and
selection of the most suitable encoders and
decoders. On the other hand, the W3C is mainly
concerned with the definition of proper
JavaScript mechanisms aimed at allowing and
securing access to input devices, as well as the
network protocols chosen for communication.

The two mentioned standardization activities
intersect at the boundary between the applica-
tion-level responsibilities residing in a single
node and the intercommunication activities
between remote nodes. The current debate
around such topics focuses on the definition of
application programming interfaces (APIs) capa-
ble of clearly separating roles and responsibili-
ties. The idea is to have client-side web
applications (typically written in a mix of HTML
and JavaScript) interact with web browsers
through an ad hoc defined API allowing them to
properly exploit and control browser functions,
as well as interact with the browsers themselves
in both a proactive (e.g., to query browser capa-
bilities) and reactive (e.g., to receive browser-
generated notifications) way. The mentioned
application-browser API should hence provide a
wide set of functions, like connection manage-
ment (in a peer-to-peer fashion), encoding/
decoding capabilities, negotiation, selection and
control, media control, and firewall and NAT
traversal.

The design of the application-browser API
definitely represents a challenging issue, but it
does not solve the overall problem at hand. The
complete picture, in fact, envisages that a contin-
uous real-time flow of data is streamed across
the network in order to put into direct commu-
nication two (or even more) browsers at a time,
with no further intermediaries along the path.
We are hence talking about browser-to-browser
communication, which is a revolutionary
approach to web-based communication, since it
allows peer-to-peer data communication to enter
the web application arena for the very first time.

This is a major breakthrough in the telecom-
munications world and hence requires that a
number of issues be taken into account, among
which trust and security play a fundamental role.
With respect to this last point, new security
threats come to the fore as soon as we allow
direct browser-to-browser communication. The
basic web security policy currently in place is in
fact based on the principle of isolation, allowing
users to protect their computers from both mali-
cious scripts and cross-site content references.
As soon as we widen the scope to browser-to-
browser communications, new facets of the gen-
eral security issue are unveiled. First and
foremost, communications security has to be
taken into account in much the same way as it
already is with other network protocols (e.g.,
SIP), allowing for direct communication between
any two endpoints, unless we envisage the pres-
ence of relays acting as transparent intermedi-
aries. Second, and also related to the first point,
in case of direct interaction between any two
browsers, proper mechanisms have to be put in
place in order to verify consent before the actual

data exchange phase starts. In the depicted sce-
nario, consent verification must be enforced by
the browser aiming to initiate communication
with a potential peer. We also remark that real-
time web-based communication requires that the
browser has a strict interaction with the node on
which it is installed (e.g., to access local audio
and video devices before making a multimedia
call with a target peer). This entails the defini-
tion of access policies involving some form of
end user’s consent.

The highly dynamic context we just sketched
represents the current state of the art in the
international research community. The issues
identified, and even more the potential solutions
mentioned, actually represent the current out-
come of research and engineering work that is in
full swing at the time of this writing, and hence
susceptible to changes and rethinking in the near
future as we gain more experience on the sub-
ject.

RTCWEB ISSUES IN THE
PRESENCE OF MIDDLE BOXES

As explained in the previous section, the
W3C/IETF joint work on the WebRTC/
RTCWEB standardization efforts is targeting
the ability for two or more users to interact with
each other by just using their browsers, that is,
with no need for any plugin or third party appli-
cation of any sort. Both suites are currently con-
ceived in order to be optimized for peer-to-peer
scenarios, where application servers are respon-
sible for signaling, security, and privacy enforce-
ment, but not for the delivery of the negotiated
streams themselves. Data transmission is
assumed to happen directly between users when-
ever possible (i.e., if no relaying by a TURN
server or any other similar intermediary is
deemed necessary).

This does not prevent the possibility, though,
that one or more of the involved parties is not
an end user exploiting an actual browser. There
are several scenarios, also documented in a Use
Cases draft [2] in the RTCWEB Working Group,
where a user may actually be interacting with an
application rather than another user. This
includes scenarios like connecting to an interac-
tive voice response (IVR) system, a public
switched telephone network (PSTN) gateway, or
a conferencing server.

While this is not considered a problem per se
(new applications may be conceived at the outset
with embedded support for the RTCWEB frame-
work/protocol suite), it may become an issue if
any of those scenarios involves a legacy system,
such as a system that is based on a different
voice over IP (VoIP) protocol like SIP. In fact,
although the RTCWEB suite is mostly based on
pre-existing standard technologies, there are
gaps that may need to be filled in on either side
in order for an RTCWEB-compliant implemen-
tation to be able to properly interact with a lega-
cy system. Specifically, an application server
targeting such integration, and hence talking to
both worlds, may need to take care of:
• The differences in signaling and/or media

negotiation

Real-time voice and

video communica-

tion within browsers

is among the topics

currently gaining

momentum in the

two main Internet

standardization bod-

ies, namely the Inter-

net Engineering Task

Force (IETF) and the

World Wide Web

Consortium (W3C).

ROMANO LAYOUT_Layout 1 4/1/13 1:23 PM Page 43

Authorized licensed use limited to: National Chi Nan University. Downloaded on January 07,2023 at 14:15:56 UTC from IEEE Xplore. Restrictions apply.

solomon
Highlight

solomon
Highlight

IEEE Communications Magazine • April 201344

• Support for Secure Real-time Transport
Protocol (SRTP) and interactive connectivi-
ty establishment (ICE), if missing

•Transcoding the media if there are no codecs
in common

and more

OUTSTANDING ISSUES
The first issue that needs to be faced is, of
course, signaling. Considering that the WebRTC
endpoint and the legacy system may be talking
different languages, a signaling gateway may
need to be put in place. This means that an
RTCWEB Janus (a component able to seamless-
ly interact with both worlds while acting as a
bridge between them) needs to be implemented.
Fortunately, considering the above-mentioned
reuse of standard technologies, this is only par-
tially an issue. WebRTC and RTCWEB are cur-
rently based on JSEP [3] to handle signaling
between web applications and application
servers. It is important to notice, though, that
JSEP is not a signaling protocol, but rather pro-
vides a way to handle the signaling/negotiation
state in web applications, thus allowing actual
signaling protocols (SIP, Jingle, etc.) to be
deployed on top of it. Negotiation itself is
instead based on the Session Description Proto-
col (SDP) offer/answer model. This means that
if the legacy system makes use of SDP to negoti-
ate media streams (which is the case in, e.g.,
SIP-based systems), taking care of bridging the
two worlds is significantly easier. This also
entails, however, that two different signaling
state machines may be involved. Assuming the
legacy system is based on SIP, a first offer from
a web client would need to be translated into an
INVITE toward a uniform resource identifier
(URI), further updates from the web client
would need to be mapped onto re-INVITEs
(and vice versa), closing the session on either
side would need to be taken care of accordingly,
and so on.

This becomes more complicated whenever
either side makes use of specific functionality at
the media level that the other end does not sup-
port. For instance, as specified in the RTP Usage
draft [4] in the RTCWEB WG, WebRTC end-
points are designed to support innovative fea-
tures like SRTP, the Audio-Visual Profile
Feedback (AVPF) profile for RTCP, RTP/RTCP
multiplexing, RTP session multiplexing, and so
on. If the legacy system does not implement all
those features, but only, for instance, plain RTP,

a proper RTP gateway may need to be deployed
as well. In fact, while some of the negotiated
features may just be declined (e.g., RTP/RTCP
multiplexing), some others must necessarily be
implemented. This is the case, for instance, of
SRTP: consensus was reached in the IETF to
explicitly forbid, for security reasons, the use of
plain RTP in the WebRTC suite. This means
that any entity willing to interact with WebRTC
endpoints must necessarily support SRTP as
well. Systems supporting just plain RTP would
hence need to rely on a media gateway in order
to fulfill this requirement. The deployment of
the mentioned media gateway would be under
the responsibility of the RTCWEB Janus intro-
duced before, considering the media negotiation
could need to be manipulated in order to place
the media gateway along the RTP path between
the WebRTC endpoint and the legacy system.

Another feature WebRTC endpoints require
as mandatory is ICE support. ICE is the stan-
dard suite of technologies adopted by most exist-
ing VoIP deployments to take care of Network
Address Translator (NAT) traversal. This suite
includes ways for two peers to gather candidate
addresses where they may be reached (either
directly or through relays), negotiate such
addresses, and check their reachability by means
of the Session Traversal Utilities for NAT
(STUN) protocol. While ICE is now fairly widely
deployed, there are still several legacy systems
that do not implement it. Besides, systems imple-
menting it may be supporting different versions
or flavors of ICE (e.g., in terms of how STUN
connectivity checks are constructed), meaning
that even in this case there may be interoperabil-
ity concerns. Considering ICE is strictly related
to the media channels being negotiated and
used, the above mentioned media gateway may
need to fill that gap as well, in case the legacy
system is not 100 percent compliant with what
the WebRTC endpoint is expecting.

Once signaling, negotiation, and RTP/ICE
issues are dealt with, success in a WebRTC-lega-
cy endpoint interaction still cannot be guaran-
teed. In fact, it is quite obvious that a WebRTC
endpoint and a legacy one need to share support
for at least a codec in common if they want to be
able to talk to each other. A further common
codec needs to be supported if the two end-
points also want to add video to the communica-
tion. Failure to find a codec supported by both
endpoints would force the RTCWEB gateway to
also provide transcoding functionality. Transcod-
ing is usually a choice gateway implementors try
to avoid; in fact, it is a CPU-intensive feature,
which may affect the number of interactions the
gateway may provide at the same time. Besides,
it adds latency to the interaction, considering an
intermediate component bridging the media and
adapting them to both parties is deployed. In
order to minimize the chances that transcoding
is needed, the RTCWEB WG has so far reached
consensus on G.711 as a mandatory-to-imple-
ment (MTI) codec for all WebRTC endpoints.
G.711 is the most widely deployed codec in
VoIP endpoints and systems, and as such it can
safely be considered the codec to fall back on if
one wants to avoid transcoding. The RTCWEB
Working Group (WG) has also reached consen-

Figure 1. The Meetecho WebLite “legacy” architecture.

XMPP

SIP

BFCP

RTP

GET

POST
Browser

Applet

JavaScript

AS

Web server

MS

ROMANO LAYOUT_Layout 1 4/1/13 1:23 PM Page 44

Authorized licensed use limited to: National Chi Nan University. Downloaded on January 07,2023 at 14:15:56 UTC from IEEE Xplore. Restrictions apply.

solomon
Highlight

solomon
Highlight

solomon
Highlight

solomon
Highlight

solomon
Highlight

solomon
Highlight

IEEE Communications Magazine • April 2013 45

sus on the adoption of Opus as an MTI higher-
quality audio codec. Consensus on a video codec,
instead, has not been reached as of yet, and a
heated debate is still taking place.

The entire set of above described require-
ments has proven useful when trying to design a
hybrid architecture for seamless interaction
between WebRTC endpoints and our legacy
standards-based conferencing platform, as
explained in the next section.

BRINGING RESEARCH TO THE FIELD:
MEETECHO RTCWEBLITE

The analysis made in the previous section moti-
vated us into designing a WebRTC point of
entry to our conferencing platform called Meete-
cho [5]. Meetecho is a standards-based confer-
encing architecture that makes use of standard
protocols (e.g.,Extensible Messaging and Pres-
ence Protocol [XMPP], SIP, and Binary Floor
Control Protocol [BFCP], among others) to pro-
vide collaboration features. As such, especially
for its use of SIP/SDP and RTP to provide audio
and video, it can be seen as the “legacy” system
with which a WebRTC endpoint might want to
interact. For what concerns Meetecho and
browsers, we already devised a fully web-based
interface to the functionality provided, called
WebLite. Meetecho WebLite allows participants
to access a conference room from their browser.
This means that access to all of the above men-
tioned standard protocols and functionality is
provided by means of a gateway allowing users
to interact with native clients in a transparent
fashion. While this was relatively simple to
accomplish with just HTML and JavaScript for
most of the envisaged features, for what con-
cerns audio and video we so far had to rely on a
different approach: a Java Applet that, guided
by the application logic in JavaScript, takes care
of the user devices (microphone, webcam), as
well as of encoding and decoding functionality
and management of the RTP streams exchanged
with the conferencing server, as illustrated in
Fig. 1.

This was a necessary step since, as explained
in the first sections, browsers currently have no
means to provide a native way to access
audio/video capturing functionality and bidirec-
tional streaming if not by means of plugins like
Java Applets, Flash/Silverlight applications, or
specifically designed Netscape Plugin API
(NPAPI) plugins. This is, of course, what the
RTCWEB/WebRTC joint work is trying to pro-
vide a solution for, and as such this offered us
an excellent opportunity to try to make available
a completely web-based interface to our “legacy”
conferencing system, as depicted in Fig. 2.

In order to validate our interoperability
efforts, we exploited Chrome Canary as the
WebRTC endpoint, being this the only browser
that at the time provided a ready-to-use, almost
complete WebRTC stack.

Following the guidelines presented in the
previous section, the first step was, of course, to
take care of signaling. As anticipated, Meetecho
makes use of SIP as its signaling protocol to
negotiate media streams. SIP is also used to set

up a BFCP channel with participants, in order to
provide floor control functionality. We chose to
make use of RTCWeb Offer/Answer Protocol
(ROAP) [6], a JSON-based signaling protocol,
as a simple and quick solution to provide signal-
ing in the web interface. ROAP was a first pro-
posal that was made in the RTCWEB WG to
perform signaling in WebRTC, but was then put
aside in favor of JSEP, which, as explained in
the previous section, allows for more generic
management of the signaling state rather than
signaling functionality per se. As such, JSEP can
be used as a standing ground to implement any
kind of signaling, including ROAP. ROAP-over-
JSEP looked like a simple and effective solution,
and for the purpose we made use of a simple
JavaScript library, developed by Google as an
example of how JSEP could be used to manage
signaling on the client side. We then provided a
simple user interface (UI) to let users decide
whether to negotiate both audio and video or
just audio, in order to trigger the signaling
accordingly. For the server side, we implemented
the signaling gateway as a simple web applica-
tion taking care of signaling messages originated
by the client, and in turn generating SIP
INVITEs to our conferencing system. The sig-
naling state is then handled accordingly, for
example, by providing ROAP answers when a
200 OK to the INVITE is received or hanging
up either side of the call when the other party
closes the session. The task accomplished by the
gateway is not limited to only signaling, of
course; as explained in the previous section,
there may be several features the WebRTC end-
point may support and the legacy system may
not. This was what we found as well in a few
aspects. The first feature we were lacking was
SRTP support. As anticipated, this is an abso-
lutely mandatory feature in WebRTC. In order
to fix this requirement, we moved from Asterisk
1.4, the PBX implementation on which our

Figure 2. The Meetecho RTCWebLite archite.

Asterisk

SIP
stack

ICE SRTP

Tomcat

Browser

ROAP
stack

SDP
stack

SIP/SDP

JavaScript/HTML

H
TT

P
(R

O
A

P+
SD

P)

SI
P+

RT
P

SR
TP

+ICE

ROMANO LAYOUT_Layout 1 4/1/13 1:23 PM Page 45

Authorized licensed use limited to: National Chi Nan University. Downloaded on January 07,2023 at 14:15:56 UTC from IEEE Xplore. Restrictions apply.

solomon
Highlight

solomon
Highlight

solomon
Note
HTML5 was first released in a public-facing form on 22 January 2008, with a major update and "W3C Recommendation" status in October 2014.

IEEE Communications Magazine • April 201346

audio/video features were built, to Asterisk 1.8,
which provided us with native SRTP support.
Another mandatory feature we found ourselves
lacking was ICE. This was not an issue we could
solve by just upgrading Asterisk (work on this is
already ongoing in Asterisk 11, which will also
provide native WebRTC support, but is not
available at the time of this writing); thus, we
implemented support for it ourselves. We did so
in two different parts of our system. The negoti-
ation of candidates was taken care of in the
above introduced signaling gateway; in fact, con-
sidering our conferencing server is always reach-
able at a public address, the gathering of
candidates is definitely simplified and allows the
gateway to act as an ICE-Lite peer. The connec-
tivity checks were instead implemented on the
Asterisk side, by modifying the pre-existing
STUN protocol implementation in order to take
care of all the required additional attributes like
USE-CANDIDATE, XOR-MAPPED-ADDRESS,
MESSAGE-INTEGRITY, and so on, and be
able to both respond to connectivity checks and
generate checks on its own. This choice was
made in order to keep things as simple as possi-
ble for signaling, and focus on the media chal-
lenges instead, while also keeping signaling- and
media-related issues well separated and indepen-
dently addressable.

At this point, we started looking at possible
issues in the negotiation process itself. We first
of all noticed that Asterisk would reject the
“RTP/SAVPF” profile as negotiated by the
WebRTC endpoint: this is caused by the fact
that, while Asterisk 1.8 supports RTP/SAVP, it
does not currently support the extensions for
RTCP feedback. Hence, we looked, after rewrit-
ing the SDP descriptions, in both directions, in
order to make sure that Asterisk finds RTP/
SAVP in the SDP received from the gateway,
and WebRTC gets back the RTP/SAVPF it
negotiated in the first place instead. When done
with that, we looked after taking care of SDP
attributes that might confuse either side. As
anticipated in the previous section, WebRTC
endpoints try to multiplex RTP and RTCP
streams, which is something Asterisk does not
support at the moment. Specifically, in accor-
dance with RFC 4566, Asterisk assumes that the
port used for RTCP is equal to the RTP port,
incremented by one. In order to make sure the
WebRTC endpoint was made aware of this, we
let the gateway properly modify the conferenc-
ing server’s SDP by introducing a new media-
level attribute of type “a=rtcp:…” for each
involved medium, with explicit indication of the
port to be used for RTCP, before sending it to
the WebRTC endpoint. Moving further, as
anticipated we chose to delegate ICE-related
negotiation to the gateway rather than to the
private branch exchange (PBX) itself. To this
purpose, we made sure that before providing
the WebRTC endpoint with any reply or update
from the conferencing server, the SDP would be
extended with the ICE additional attributes: a
session-level attribute to report an ICE-Lite
implementation (a=ice-lite), and media level
attributes to convey authentication information
(a=ice-ufrag and ice-pwd) and candidates
(a=candidate). Of course, this obliged us to

provide, for each negotiated medium, two dif-
ferent candidates instead of just one. In fact, as
explained before, we negotiate RTCP explicitly
on a different port, which is to be accordingly
reported as a candidate, since connectivity
checks have to be performed for both RTP and
RTCP.

When done with the above mentioned steps,
we started looking into interoperability at the
encoding level. For audio, this was quite easy. In
fact, we found out that WebRTC endpoints and
our conferencing server had a codec in common,
specifically G.711 m-law. Even though G.711 is
definitely not the best choice when it comes to
audio, it greatly simplified our task of creating a
bridge between WebRTC and our legacy system.
This said, we recently started working on the
integration of an Opus codec in Asterisk. Opus
is a further MTI codec in WebRTC and provides
much better audio quality, with affordable net-
work bandwidth. As explained later, this task is
not complete at the time of this writing and will
be the subject of future work.

Concerning video, the work to be done was
quite different. In fact, it is important to notice
that while Asterisk provides audio mixing native-
ly, it does nothing in that sense when it comes to
video, which can only be handled with a
passthrough approach. To overcome this issue,
we have designed and implemented a video
mixer that can take care of both transcoding and
mixing heterogeneous video streams. The men-
tioned video mixer, though, was able to support
“legacy” encodings like H.261, H.263 (with relat-
ed extensions), and H.264, but not VP8, which,
waiting for a clear consensus on the MTI video
codec in WebRTC, is the only video codec our
reference WebRTC endpoint supported. As a
consequence, we had to accomplish two different
tasks:
• Implement a simple pass-through mecha-

nism for VP8 frames in Asterisk
• Implement full VP8 transcoding features in

our video mixer, in order to allow VP8-
compliant endpoints to take advantage of
the desired video composition capabilities
This process was almost successful, with

just a minor drawback. In fact, our video mixer
currently only supports QCIF and CIF resolu-
tions with respect to video, while the reference
WebRTC endpoint always sends 640 ¥ 480
video streams. While this is not a problem on
the client side (the browser showed no issue
when presented with a lower-resolution incom-
ing video stream), it can be problematic for
the video mixer, as i t has to continuously
downsize incoming frames from WebRTC end-
points in order to mix them. This issue will be
solved as soon as WebRTC endpoints imple-
ment the “constraints” mechanism recently
introduced in the WebRTC specification. To
complete the integration, we also implemented
support for the RTCP FIR feedback message
in Asterisk; this was needed in order to allow
the video mixer to receive a full frame for a
participant whenever the participant was to be
included in the mix (e.g., when the participant
was granted the video f loor by means of
BFCP), in order to avoid annoying artifact or
ghosting effects.

It is important to

notice that while

Asterisk provides

audio mixing native-

ly, it does nothing in

that sense when it

comes to video,

which can only be

handled with a

passthrough

approach. To over-

come this issue, we

have designed and

implemented a video

mixer that can take

care of both

transcoding and mix-

ing heterogeneous

video streams.

ROMANO LAYOUT_Layout 1 4/1/13 1:23 PM Page 46

Authorized licensed use limited to: National Chi Nan University. Downloaded on January 07,2023 at 14:15:56 UTC from IEEE Xplore. Restrictions apply.

solomon
Highlight

solomon
Highlight

solomon
Underline

solomon
Underline

solomon
Highlight

solomon
Highlight

solomon
Underline

solomon
Highlight

solomon
Highlight

solomon
Underline

solomon
Highlight

solomon
Note
QCIF:176 x 120 Pixels (a quarter of CIF)

CIF: 352 X 240 Pixels

2CIF: 720 X 240 Pixels

4CIF: 704 X 480 Pixels

D1: 720 X 480 Pixels

960H: 976 X 582 Pixels

HD: 1280 x 720 Pixels (for IP Cameras, 1080P)

IEEE Communications Magazine • April 2013 47

RELATED WORK

WebRTC is gaining more and more interest, and
a number of relevant projects are currently
under development. A large community of devel-
opers exchanges information, comments, sugges-
tions, and announcements on the discuss-webrtc
group on Google Groups.

Doubango Telecom has recently started the
so-called sipml5 project, which shares some
similarities with our work. Sipml5 is based on
an open source HTML5 SIP client, entirely
written in JavaScript and relying on WebRTC.
It was conceived at the outset with the aim of
fostering interoperability with SIP networks.
The reference architecture envisages the pres-
ence of an Asterisk server playing the same
role as our Janus component. The main differ-
ence between the two concerns the chosen sig-
naling protocol: we decided to rely on the
lightweight ROAP over JSEP approach, while
sipml5 makes use of the SIP protocol. It is
worth noting that sipml5 developers had to
face the same ICE-related issues as those we
found for Asterisk.

A number of solutions leveraging the use of
a multipoint control unit (MCU) have been
developed and advertised on the aforemen-
tioned discuss-webrtc group. Among them, we
mention Lynckia, an MCU-based approach to
WebRTC videoconferencing currently under
development at the Universidad Politecnica de
Madrid. Lynckia leverages a single PeerCon-
nection in the broadcaster, connected to an
external agent (MCU) that publishes the
media. A simple web application connects the
subscribers to the MCU, which forwards the
stream. Other similar projects exist, all lever-
aging the use of an MCU. The approach fos-
tered by Lynckia and other MCU-based
solutions is significantly different from ours.
First, it is not aimed at interaction between
WebRTC browsers and the “legacy” SIP net-
work. Furthermore, i t just provides
audio/video capabilities, while we focus on
providing a whole set of collaboration tools,
with audio and video being just two of them.
This also applies to sipml5.

Finally, we mention a project currently ongo-
ing at the Real-Time Communication Laborato-
ry of the Illinois Institute of Technology, called
Voice and Video on the Web (VVoW), which
aims at building a web-based conferencing ser-
vice. In its first version, developed in 2011, the
solution was Flash-based; recently, the system
has been redesigned to be WebRTC-compliant
and to use HTML5.

CONCLUSIONS AND DIRECTIONS OF
FUTURE WORK

In this article we propose an engineering
approach to the integration between legacy SIP-
based systems and WebRTC applications. We dis-
cuss the main issues entailed by the mentioned
process and present a real-world example associ-
ated with allowing access to the Meetecho collab-
oration framework from WebRTC browsers.

We are continually updating our implementa-

tion with respect to changes occurring on a daily
basis, such as how ICE is now handled in
Chrome, in contrast with the less standard ver-
sion it relied on before. We are also working on
the support of different WebRTC endpoint
implementations, like Firefox Nightly, as well as
browsers exploiting the webrtc4all (http://code.
google.com/p/webrtc4all/) plugin to implement
the required functionality before it is natively
supported and widespread. Besides, as anticipat-
ed earlier, we are also devoting efforts to the
integration of the Opus codec in Asterisk in
order to have it available in the list of supported
codecs when negotiating a media session. While
this integration is nearly completed, it still needs
extensive testing, and is so far only supported by
Firefox Nightly.

REFERENCES
[1] C. Holmberg, S. Hakansson, and G. Eriksson, “Web

Real-Time Communication Use-Cases and Require-
ments,” draft-ietf-rtcweb-use-cases-and-requirements-
10, Dec. 2012.

[2] C. Perkins, M. Westerlund, and J. Ott, “Web Real-Time
Communication (WebRTC): Media Transport and Use of
RTP,” draft-ietf-rtcweb-rtp-usage-05, Oct. 2012.

[3] C. Jennings et al., “RTCWeb Offer/Answer Protocol
(ROAP),” draft-jennings-rtcweb-signaling-01, Oct. 2011.

[4] J. Uberti and C. Jennings, “Javascript Session Establish-
ment Protocol,” draft-ietf-rtcweb-jsep-02, Oct. 2012.

[5] A. Amirante et al., “Standard Multimedia Conferencing
in the Wild: the Meetecho Architecture,” Multimedia
Tools and Applications, 2011, pp. 1–18.

[6] S. Loreto and S. P. Romano, “Real-Time Communica-
tions in the Web: Issues, Achievements, and Ongoing
Standardization Efforts,” IEEE Internet Computing, vol.
16, no. 5, Sept.–Oct. 2012, pp. 68–73.

BIOGRAPHIES
ALESSANDRO AMIRANTE (alex@meetecho.com) received both
his M.Sc. degree in telecommunications engineering in
2007 and his Ph.D. in computer engineering and systems
in 2010 from the University of Napoli “Federico II,” Italy.
He is currently CTO at Meetecho s.r. l. and a senior
researcher at the Computer Science Department of Univer-
sity of Napoli “Federico II.” His research interests fall in the
field of networking, with special regard to next generation
network architectures and multimedia services over the
Internet.

TOBIA CASTALDI (tobia.castaldi@unina.it) received his
degree in telecommunications engineering from the Uni-
versity of Napoli “Federico II” in 2006. He is currently CEO
at Meetecho s.r.l. and a senior researcher at the Comput-
er Science Department of the University of Napoli “Federi-
co II.” The main topic of his research concerns real-time
applications for the next-generation Internet with special
regard to the IP multimedia subsystem (IMS) architecture
and services.

LORENZO MINIERO (lorenzo.miniero@unina.it) received his
degree in computer engineering from the University of
Napoli “Federico II” in 2006. He is currently COB at Meete-
cho s.r.l. and a senior researcher at the Computer Science
Department of the same university. His research interests
mostly focus on next generation networks, network real-
time applications, and communication protocols, with spe-
cial emphasis on the related standardization efforts.

SIMON PIETRO ROMANO (spromano@unina.it) is an assistant
professor in the Computer Engineering Department at the
University of Napoli and cofounder of Meetecho, a start-
up (and spin-off of the university) focusing on Internet-
based conferencing and collaboration. His research
interests primarily fall in the field of networking, with
special regard to real-time multimedia applications, net-
work security, and autonomic network management.
Romano has a Ph.D. in computer networks from the Uni-
versity of Napoli. He actively participates in IETF standard-
ization activit ies in the real-t ime applications and
infrastructure areas.

We are also devoting

efforts to the inte-

gration of the Opus

codec in Asterisk, in

order to have it avail-

able in the list of

supported codecs

when negotiating a

media session. While

this integration is

nearly completed, it

still needs extensive

testing, and is so far

only supported by

Firefox Nightly.

ROMANO LAYOUT_Layout 1 4/1/13 4:49 PM Page 47

Authorized licensed use limited to: National Chi Nan University. Downloaded on January 07,2023 at 14:15:56 UTC from IEEE Xplore. Restrictions apply.

solomon
Highlight

solomon
Underline

solomon
Highlight

solomon
Highlight

solomon
Highlight

solomon
Highlight

solomon
Callout
These 4 are all internet-drafts.

solomon
Highlight

solomon
Highlight

solomon
Highlight

solomon
Callout
https://sites.google.com/site/vvowproject, no longer exist

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus settings for Acrobat Distiller 9)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Cadmus_Flattener_Presert)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

