« "« Chapter 4 Macro Processors
“ ® -~ Macro Processor Design Options

. . Recursive Macro Expansion
“.* Figure 4.11(a), pp. 200

10
15
20
25
30
35
40
45
50
65
70
75
80
85
90
95

RDBUFF

$LOOP

$EXIT

MACRO &BUFADR, &RECLTH, &INDEV

MACRO TO READ RECORD INTO BUFFER

CLEAR X CLEAR LOOP COUNTER

CLEAR A

CLEAR S
+LDT #4096 SET MAXIMUN RECORD LENGTH
RDCHAR &INDEV READ CHARACTER INTO REG A
COMPR A,S TEST FOR END OF RECORD

JEQ &EXIT EXIT LOOP IF EOR

STCH &BUFADR, X STORE CHARACTER IN BUFFER
TIXR T LOOP UNLESS MAXIMUN LENGTH
JLT $LOOP HAS BEEN REACHED

STX &RECLTH SAVE RECORD LENGTH

MEND

System Programming

. . Recursive Macro Expansion
“.* Figure 4.11(b), pp. 200

5 RDCHAR MACRO &IN

10 .

15 . MACROTO READ CHARACTER INTO REGISTER A

20 .

25 TD =X &IN’ TEST INPUT DEVICE
30 JEQ *-3 LOOP UNTIL READY
35 RD =X"&IN’ READ CHARACTER
40 MEND

= Recursive macro expansion
= Invoke amacro by another

= However ...

System Programming

. . Problem of
“.* Recursive Macro Expansion

= Previous macro processor design cannot handle such
Kind of recursive macro invocation and expansion

= The procedure EXPAND would be called recursively, thus the
Invocation arguments in the ARGTAB will be overwritten. (P.201)

= The Boolean variable EXPANDING would be set to FALSE when the
“Inner” macro expansion is finished, i.e., the macro process would
forget that it had been in the middle of expanding an “outer” macro.

s Solutions

= Write the macro processor in a programming language that allows
recursive calls, thuslocal variables will be retained.

= If you are writing in a language without recursion support, use a stack

to take care of pushing and popping local variables and return
addresses.

System Programming 4

L L

“.* General-Purpose Macro Processors

= Macro processors that do not dependent on any particular
programming language, but can be used with a variety of different
languages

= Pros

= Programmers do not need to learn many macro languages.

= Although its development costs are somewhat greater than those for alanguage-
specific macro processor, this expense does not need to be repeated for each
language, thus save substantial overall cost.

m Cons

= Large number of details must be dealt with in areal programming language

Situations in which normal nmacro paraneter substitution
shoul d not occur, e.g., comments.

Facilities for grouping together terns, expressions, or
statenents

Tokens, e.g., identifiers, constants, operators, keywords

Syntax had better be consistent with the source
progranm ng | anguage

System Programming

. . Macro Processing
“.* within Language Trandators

= The macro processors we discussed are
called “Preprocessors”.
= Process macro definitions
« Expand macro invocations
= Produce an expanded version of the source program,
which isthen used as input to an assembler or compiler
= You may also combine the macro processing
functions with the language translator:
= Line-by-line macro processor
= Integrated macro processor

System Programming

L L

“.* Line-by-Line Macro Processor

= Used as a sort of input routine for the assembler or compiler
= Read source program
= Process macro definitions and expand macro invocations

Pass output lines to the assembler or compiler

s Benefits

Avoid making an extra pass over the source program.

Data structures required by the macro processor and the language trandlator
can be combined (e.g., OPTAB and NAMTAB)

Utility subroutines can be used by both macro processor and the language
trangdlator.

= Scanni ng i nput |ines
= Searching tabl es
« Data format conversion

It is easier to give diagnostic messages related to the source statements.

System Programming 7

L

k

“.* Integrated Macro Processor

= An integrated macro processor can potentially make

use of any information about the source program that
IS extracted by the language translator.

= Ex (blanks are not significant in FORTRAN)
« DO 100 | = 1,20

a DO st at enent

« DO100 I =1

An assi gnnment st at enent

DOL00I: variable (blanks are not significant in
FORTRAN)

An integrated macro processor can support macro
Instructions that depend upon the context in which
they occur.

System Programming 8

L L

" ANSI C Macro Language

= Definitions and invocations of macros are
handled by a preprocessor, which is generally
not integrated with the rest of the compiller.

= Example
= #define NULL O
= #define EOF (-1)

« #define EQ ==
« /* syntactic nodification */

« #define ABSDIFF (X, Y) ((X)>(YV)2(X)-(Y):(YV)-(X))

System Programming

L L

" ANSI C Macro Language

= Parameter substitutions are not performed within quoted
strings:
#define DI SPLAY(EXPR) printf(“EXPR= %\ n”, EXPR)
= Example
DI SPLAY(|*J+1) ==> printf(“EXPR= %\ n”, |*J+1)
= Stringizing” operator, #
= Used to perform argument substitution in quoted strings
#define DI SPLAY(EXPR) printf(#EXPR “= %l\n”, EXPR)

= Example
= DI SPLAY(1*J+1) ==> printf(“1*J+1" “= %\ n”, |*J+1)

System Programming 10

L L

" ANSI C Macro Language

s Recursive macro definitions or invocations

= After amacro is expanded, the macro processor rescans the text that
has been generated, looking for more macro definitions or invocations.

= Macro cannot invoke or define itself recursively.

= Example

DI SPLAY(ABSDI FF(3, 8))

Scan

— vl —

printf(“ABSDI FF(3,8)" “= %l\n”,

rescan

— oAl L

printf(“ABSDI FF(3,8)” “= %l\n”,

(8)

(8)-(3)))

System Programming

ABSDI FF(3, 8))

((3)>(8) ? (3)-

11

L L

" ANSI C Macro Language

= Conditional compilation statements

= Example 1
#i f ndef ~ BUFFER_SI ZE
#define BUFFER SIZE 1024
#endi f
= Example 2

#defi ne DEBUG 1
#i f DEBUG ==

printf(.)) / * debugging outout */
#endi f

System Programming

12

L

k

“.* GCC Preprocessor Options

-E
= Run only the C preprocessor. Preprocess all the C source files

specified and output the results to standard output or to the specified
output file.

-C

= Tell the preprocessor not to discard comments. Used with the -E'
option.

P
= Tell the preprocessor not to generate #line' commands. Used with
the "-E' option.
-Dname[=defn]

= Define macro “name” as“defn”. If “=defn” isomitted, the string “1” is
assigned to “name”.

Reference: http://gcc.gnu.org/onlinedocs/gce-4.1.1/gcc/

System Programming 13

