« = Chapter 2 Assemblers
“ ® -- 2.3 Machine-Independent Assembler Features

L L

“.* Qutline

= Literals

= Symbol Defining Statement

= EXpressions

= Program Blocks

= Control Sections and Program Linking

L L

“.“ Literals

= Consider the following example

LDA FIVE

FIVE WORD)

= |t IS convenient to write the value of a constant
operand as a part of instruction

> LDA =X05’

L L

“.“ Literals

= A literal is identified with the prefix =, followed
by a specification of the literal value

= Examples: (Figure 2.10, pp.68)
45 O001A ENDFI L LDA =C EOF 032010

ni xbpe disp
000000 110010 010

93

002 454F46
215 1062 W.OOP TD =X 095’ E3
230 106B VD

1076 =X 05’ 05

L L

“.* Literalsvs. Immediate Operands

= Literals

=« The assembler generates the specified value as a
constant at some other memory location

45 - 001A ENDFIL LDA =C EOF 032010
= Immediate Operands

= Theoperand value is assembled as part of the machine
Instruction

55 0020 LDA #3 010003

s We can have literals in SIC, but immediate
operand is only valid in SIC/XE.

L L

“.* Literal Pools

= Normally literals are placed into a pool at the end of
the program
= SeeFig. 2.10 (after the END statement)

= In some cases, it is desirable to place literals into a
pool at some other location in the object program

= Assembler directive LTORG

= When the assenbl er encounters a LTORG st at enent,
It generates a literal pool (containing all
literal operands used since previous LTORG

= Reason: keep the literal operand close to the instruction

=« O herwise PCrelative addressi ng may not be
al | owed

L L

“.* Duplicate literals

= The same literal used more than once in the program
= Only one copy of the specified value needs to be stored
= For example, =X"05 in Figure 2.10 (pp. 68)

= How to recognize the duplicate literals

= Compare the character strings defining them

« Easier to inplenent, but has potential problem
(see next)

= €.g9g. =X 05’
= Compare the generated data value
« Better, but wll increase the conplexity of the
assenbl er

» €.9. =C EOF’ and =X 454F46’

L L

“.* Problem of duplicate-literal recognition

s ‘¥ denotes a literal refer to the current value of
program counter
= BUFEND EQU * (P.68Fig.2.10)

= There may be some literals that have the same name,
but different values
BASE *
LDB =* (cf. P.58 #LENGTH)
= Theliteral =* repeatedly used in the program has the same name,
but different values
= The literal “=*" represents an “address” in the
program, so the assembler must generate the
appropriate “Modification records”.

L L

“.* Literal table

= LITTAB

= Content
= Literal nane
« Operand val ue and | ength
=« Addr ess

=« LITTAB isoften organized as a hash table, using the
literal name or value as the key

L L

“.* Implementation of Literals

m Pass 1

= Build LITTAB with literal name, operand value and length,
|eaving the address unassigned

= When LTORG or END statement is encountered, assign an address
to each literal not yet assigned an address
= The location counter is updated to reflect the

nunber of bytes occupied by each literal
= Pass?2
= Search LITTAB for each literal operand encountered
= Generate datavaluesusing BY TE or WORD statements

= Generate Modification record for literals that represent an address
In the program

10

. . Example: (pp. 67, Figure 2.9)

" SYMTAB & LITTAB

SYMTAB

Nane Val ue
COPY
FI RST 0
CLOOP 6
ENDFI L 1A
RETADR 30
LENGTH 33
BUFFER 36
BUFEND 1036
MAXLEN 1000
RDREC 1036
RLOOP 1040
EXIT 1056
| NPUT 105C
WREC 105D
WL OOP 1062

LITTAB

Literal Hex Lengt h | Addr ess
Val ue

C ECF 454F46 |3 002D

X 05’ 05 1 1076

11

L L

“.* Symbol-Defining Statements

= Assembler directive EQU

Allows the programmer to define symbols and specify their values
Syntax: symbol EQU value

To improve the program readability, avoid using magic numbers,
make it easier to find and change constant values

Replace
+LDT #4096
with
MAXLEN EQU 4096
+LDT #MAXLEN
Define mnemonic names for registers
« A EQU O RMO A, X
= X EQU 1
Expression is allowed
= MAXLEN EQU BUFEND- BUFFER
12

L L

“.* Assembler directive ORG

s Assembler directive ORG
= Allow the assembler to reset the PC to vaues
Syntax: ORG value

= When ORG Is encountered, the assembler resets its
LOCCTR to the specified value

= ORG will affect the values of all 1abels defined until the
next ORG

= If the previous value of LOCCTR can be automatically
remembered, we can return to the normal use of
LOCCTR by simply write

ORG

13

“ Example: using ORG

s In the data structure sme

= SYMBOL.:

(100 entries)

6 bytes

= VALUE: 3 bytes(oneword)

= FLAGS:

2 bytes

SYMBOL VALUE FLAGS

= We want to refer to every field of each entry
= |[f EQU statements are used

STAB
SYMBOL
VALUE
FLAG

RESB 1100

EQU STAB
EQU STAB

+6
+9

9% Offset from STAB

EQU STAB

14

L L

“.* Example: using ORG

s If ORG statements are used

STAB RESB 1100
ORG STAB <4— Set LOCCTR to STAB
SYMBCL RESB |6
VALUE RESW |1
FLAGS RESB |2 4— Size of each field

ORG STAB+1100 <«— Restore LOCCTR
= We can fetch the VALUE field by

LDA VALUE, X
« X=0,11, 22, ... for each entry

15

L L

“. * Forward-Reference Problem

s Forward reference is not allowed for either
EQU or ORG.
=« All termsin the value field must have been defined
previoudly in the program.
=« Thereasonisthat all symbols must have been defined
during Pass 1 in atwo-pass assembl er.

e Allowed: ALPHA RESW 1
BETA EQU ALPHA
 Not allowed: BETA EQU ALPHA

ALPHA RESW 1

16

L

k

“.* EXpression

= The assemblers allow “the use of expressions as

operand”

= Theassembler evaluates the expressions and produces a single
operand address or value

= Expressions consist of

= Qper at or

+,-,*%,/ (division is usually defined to produce an
I nteger result)

= | ndividual terns
Const ant s
User - defi ned synbol s
Special terns, e.g., *, the current value of LOCCTR

= Examples
= MAXLEN EQU BUFEND- BUFFER
« STAB RESB (6+3+2)* MAXENTRI ES

17

L L

“.* Relocation Problem In Expressions

s Values of terms can be

= Absolute (independent of program location)
= constants

= Relative (to the beginning of the program)
= Address | abels
« * (value of LOCCTR)

= EXxpressions can be

= Absolute
« Only absolute terns
MAXLEN EQU 1000
= Relative terns in pairs wth opposite signs for each
pair
MAXLEN EQU BUFEND- BUFFER
= Relative

« All the relative terns except one can be paired as
descri bed in “absolute”. The renai ni ng unpaired
relative termnust have a positive sign.

STAB EQU OPTAB + (BUFEND — BUFFER)

18

L L

“.* Restriction of Relative Expressions

= NoO relative terms may enter into a
multiplication or division operation
= 3* BUFFER

= EXxpressions that do not meet the conditions
of either “absolute” or “relative” should be

flagged as errors.
« BUFEND + BUFFER
= 100 - BUFFER

19

L L

“.* Handling Relative Symbolsin SYMTAB

= To determine the type of an expression, we must
keep track of the types of all symbols defined in

the program.

= We need a “flag” in the SYMTAB for indication.

Symbol Type Value
RETADR R 0030
BUFFER R 0036
BUFEND R 1036
MAXLEN A 1000

e Absolute value
BUFEND - BUFFER

e Illegal
BUFEND + BUFFER
100 - BUFFER

3 * BUFFER

20

L L

“.* Program Blocks

= Allow the generated machine instructions and
data to appear in the object program in a
different order

= Separating blocks for storing code, data, stack, and
larger data block

= Program blocks v.s. Control sections

= Program blocks
« Segnments of code that are rearranged
wthin a single object program unit
= Control sections

« Segnments of code that are translated into
| ndependent object programunits

21

L L

“.* Program Blocks

s Assembler directive: USE

USE [bl ocknane]

At the beginning, statements are assumed to be part of
the unnamed (default) block

If no USE statements are included, the entire program
belongs to this single block

Each program block may actually contain several
separate segments of the source program

Example: pp. 79, Figure 2.11

22

L L

“.* Program Blocks

Assembler rearrange these segments to gather
together the pieces of each block and assign address
= Separate the program into blocks in a particular order
= Large buffer areais moved to the end of the object program
= Program readability is better if data areas are placed in the source
program close to the statements that reference them.
Example: pp, 81, Figure 2.12
= Three blocks are used

= default: executable instructions

CDATA

« CDATA: all data areas that are less in |ength

CBLKS

« CBLKS: all data areas that consists of |arger
bl ocks of nenory

23

L

k

“.* Example: pp. 81, Figure 2.12

{

0

NNNPPRPPOOOOOOOOOOOOoOO

COPY
FIRST
CLOOP

ENDFIL

RETADR
LENGTH

BUFFER
BUFEND
MAXLEN

START
STL
JSUB
LDA
COMP
JEQ
JSUB

LDA
STA
LDA
STA
JSUB

USE

0
RETADR
RDREC
LENGTH
#0
ENDFIL
WRREC
CLOOP
=C'EOF
BUFFER
#3
LENGTH
WRREC
@RETADR

172063
4B2021
032060
290000
332006
4B203B
3F2FEE
032055
O0F2056
010003
0F2048
4B2029
3E203F

CDATA < CDATA block

RESW
RESW
USE

1
1

CBLKS <—— CB|KS block

RESB
EQU
EQU

4096

BUFEND-BUFFER

24

L L

“.* Example: pp. 81, Figure 2.12

PP OOOO0OO0OO0O0O0O0O0O00O0O0O00O0O0oO0o

(default) block

B410
B400
B440
75101000
E32038
332FFA
DB2032
A004
332008
S57A02F
B850
3B2FEA
13201F
4F0000

CDATA < CDATA block

RDREC USE<«
CLEAR X
CLEAR A
CLEAR S
+LDT #MAXLEN
RLOOP ™D INPUT
JEQ RLOOP
RD INPUT
COMPR AS
JEQ EXIT
STCH BUFFER.X
TIXR T
ILT RLOOP
EXIT STX LENGTH
RSUB
USE
INPUT BYTE XF1

F1

25

L L

“.* Example: pp. 81, Figure 2.12

P OOOO0O0O0OOO0O0OO0oOOo

=

WRREC

WLOOP

«—

USE
CLEAR
LDT
TD
JEQ
LDCH
WD
TIXR
JLT
RSUB
USE
LTORG
=C'EOF
=X'05’
END

(default) block

X
LENGTH

=X'05’

WLOOP

BUFFER,X
=X'05’

T
WLOOP

CDATA<—CDATA block

FIRST

B410
772017
E3201B
332FFA
53A016
DF2012
B850
3B2FEF
4F0000

454F 46
05

26

L L

“.* Rearrange Codes into Program Blocks

m Pass 1

= A separate location counter for each program block

« Save and restore LOCCTR when swi tching between
bl ocks

« At the beginning of a block, LOCCTR is set to O.
= Assign each label an address relative to the start of the block

= Store the block name or number in the SYMTAB along with the
assigned relative address of the |abel

= Indicate the block length as the latest value of LOCCTR for each
block at the end of Passl

= Assignto each block a starting address in the object program by
concatenating the program blocks in a particular order

Block name Block number Address Length
(default) 0 0000 0066
CDATA 1 0066 000B
CBLKS 2 0071 1000

27

L L

“.* Rearrange Codes into Program Blocks

m Pass 2

= Calculate the address for each symbol relative to the
start of the object program by adding

« The location of the synbol relative to the
start of its bl ock

= The starting address of this bl ock

28

L
L

k

“ Example of Address Calculation (p.81)

20 0006 O LDA LENGIH 032060

= Thevalue of the operand (LENGTH)
= Address 0003 relative to Block 1 (CDATA
« Address 0003+0066=0069 rel ative to program
« When this instruction is executed

PC = 0009
« disp = 0069 — 0009 = 0060
o op ni xbpe di sp
000000 110010 060 => 032060
SYMTAB
label name block num addr. Flag

LENGTH 1 0003

29

..+ Program Blocks Loaded in Memory
“. “ (P.84Fig. 2.14)

Program loaded Rrqjative

Line Source program Object program In memory address
5 | Default(1) Default(1) Default(1) 0000
/V >
Default(2) Default(2) 0027
70 ——P
95| CDATA(1)
!\Iotgo_resent 100 CDATA(2) Default(3) 004D
N object program | 10s[g ks Default(3)
125
Default(2) CDATA(1) 0066
006C
CDATA(3) \ CDATA(2)
CDATA(3) 006D
180 0071
185 | CDATA(2) CBLKS(1)
210 Default(3)
245
253 | CDATA(3)
1070

30

L

k

“ Object Program

It IS not necessary to physically rearrange the
generated code in the object program

= Theassembler just ssimply insert the proper load address in
each Text record.

= Theloader will load these codes into correct place

HCOPY 000000001071
10000001E1720634B20210320602900003320064B203B3F 2F EE0320550F 2056010003
100001 E090F20484B20293E203F

T0000271 DB41 0B400B440751 01000E32038332FFADB2032A00433200857A02FB850
I'000044093BZFEA1 3201 F4F0000

T00006001f1
T00004D19B410772017E3201B332FFA53A016DF2012B8503B2FEF4F0000
100006D04454F4605

E000000

31

L L

“.* Control Sections and Program Linking

s Control sections

can be loaded and relocated independently of the other
control sections

are most often used for subroutines or other logical
subdivisions of aprogram

the programmer can assemble, load, and manipulate each
of these control sections separately

because of this, there should be some means for linking
control sections together

assembler directive: CSECT
sechane CSECT

separate |ocation counter for each control section

32

L L

“.* Externa Definition and Reference

= Instructions in one control section may need to refer
to instructions or data located in another section

s External definition
EXTDEF name[, namej

= EXTDEF names symbolsthat are defined in this control section
and may be used by other sections

= ExX: EXTDEF BUFFER, BUFEND, LENGTH

s External reference
EXTREF name[,name]

= EXTREF names symbols that are used in this control section and
are defined elsewhere

= Ex: EXTREF RDREC, WRREC

= T0 reference an external symbol, extended format
Instruction is needed (why?)

33

L L

“.* Example: pp. 86, Figure 2.15

o

Implicitly defined as an external symbol

first control section
START«— 0

COPY
EXTDEF BUFFER,BUFEND,LENGTH
EXTREF RDREC,WRREC
FIRST STL RETADR
CLOOP | +ISuB RDREC
LDA LENGTH
COMP #0
JEQ ENDFIL
| +JsuB WRREC
] CLOOP
ENDFIL LDA =C'EOF’
STA BUFFER
LDA #3
STA LENGTH
| +JSUB WRREC
] @RETADR
RETADR RESW 1
LENGTH RESW 1
LTORG
BUFFER RESB 4096
BUFEND EQU *
MAXLEN EQU BUFFEND-BUFFER

COPY FILE FROM INPUT TO OUTPUT

SAVE RETURN ADDRESS
READ INPUT RECORD
TEST FOR EOF (LENGTH=0)

EXIT IF EOF FOUND

WRITE OUTPUT RECORD
LOOP

INSERT END OF FILE MARKER
SET LENGTH = 3

WRITE EOF
RETURN TO CALLER

LENGTH OF RECORD

4096-BYTE BUFFER AREA

34

L L

“.* Example: pp. 86, Figure 2.15

Implicitly defined as an external symbol
/ second control section

RDREC CSECT
SUBROUTINE TO READ RECORD INTO BUFFER
EXTREF BUFFER,LENGTH,BUFFEND |
CLEAR X CLEAR LOOP COUNTER
CLEAR A CLEAR A TO ZERO
CLEAR S CLEAR S TO ZERO
LDT MAXLEN
RLOOP 1D INPUT TEST INPUT DEVICE
JEQ RLOOP LOOP UNTIL READY
RD INPUT READ CHARACTER INTO REGISTER A
COMPR A,S TEST FOR END OF RECORD (X'00")
JEQ EXIT EXIT LOOP IF EOR
+STCH BUFFER,X STORE CHARACTER IN BUFFER
TIXR T LOOP UNLESS MAX LENGTH HAS
JLT RLOOP BEEN REACHED
EXIT +STX LENGTH SAVE RECORD LENGTH
RSUB RETURN TO CALLER
INPUT BYTE X'F1’ CODE FOR INPUT DEVICE
MAXLEN WORD BUFFEND-BUFFER

35

L L

“.* Example: pp. 86, Figure 2.15

Implicitly defined as an external symbol
third control section
WRREC CSECT /

SUBROUTINE TO WRITE RECORD FROM BUFFER

' EXTREF LENGTH,BUFFER |

CLEAR X CLEAR LOOP COUNTER

+LDT LENGTH

WLOOP 1D =X'05’ TEST OUTPUT DEVICE

JEQ WLOOP LOOP UNTIL READY

+LDCH BUFFER,X GET CHARACTER FROM BUFFER
WD =X"05’ WRITE CHARACTER
TIXR T LOOP UNTIL ALL CHARACTERS HAVE
JLT WLOOP BEEN WRITTEN
RSUB RETURN TO CALLER
END FIRST

36

L

k

“.* External Reference Handling

m Case 1l (r.87)

15 0003 CLOOP +JSUB RDREC 4B100000
=« Theoperand RDREC is an external reference.

= Theassembler
= has no i dea where RDREC i s

= il nserts an address of zero

= cCan only use to provide
enough room (that is, relative addressing
for external reference is invalid)
=« Theassembler generates information for each external
reference that will allow the loader to perform the

required linking.

37

L L

“.* External Reference Handling

m Case?
190 0028 MAXLEN WORD BUFEND- BUFFER 000000
= There aretwo external referencesin the expression, BUFEND and
BUFFER.

= Theassembler
= lnserts a val ue of zero

= passes information to the | oader
Add to this data area the address of BUFEND
Subtract fromthis data area the address of BUFFER

s Case 3

= Online 107, BUFEND and BUFFER are defined in the same control
section and the expression can be calculated immediately.

107 1000 MAXLEN EQU BUFEND- BUFFER

38

L L

“.* Object Code of Figure 2.15

Case 1

0000 COPY START 0

EXTDEF BUFFER,BUFFEND,LENGTH

EXTREF RDREC,WRREC
0000 FIRST STL RETADR 172027
0003 CLOOP +JSUB RDREC 48100000
0007 LDA LENGTH 032023
000A COMP #0 290000
000D JEQ ENDFIL 332007
0010 +JSUB WRREC 4B100000
0014 J CLOOP 3F2FEC
0017 ENDFIL LDA =C'EOF 032016
001A STA BUFFER OF2016
001D LDA #3 010003
0020 STA LENGTH OF200A
0023 +JSUB WRREC 48100000
0027 J @RETADR 3E2000
002A RETADR RESW 1
002D LENGTH RESW 1

LTORG
0030 * =C'EOF 454F46
0033 BUFFER RESB 4096
1033 BUFEND EQU *
1000 MAXLEN EQU BUFEND-BUFFER

39

L L

“.* Object Code of Figure 2.15

0000 RDREC CSECT

SUBROUTINE TO READ RECORD INTO BUFFER

EXTREF BUFFER,LENGTH,BUFEND

0000 CLEAR X B410
0002 CLEAR A B400
0004 CLEAR S B440
0006 LDT MAXLEN 77201F
0009 RLOOP 1D INPUT E3201B
000C JEQ RLOOP 332FFA
000F RD INPUT DB2015
0012 COMPR A,S A004
0014 JEQ EXIT 332009
0017 +STCH BUFFER,X 57900000
001B TIXR T B850
001D JLT RLOOP 3B2FE9
0020 EXIT +STX LENGTH 13100000
0024 RSUB 4F0000
0027 INPUT BYTE X'F1’
0028 MAXLEN WORD BUFFEND-BUFFER

F1
000000 | Case 2

40

L L

“.* Object Code of Figure 2.15

0000 WRREC CSECT
SUBROUTINE TO WRITE RECORD FROM BUFFER

EXTREF LENGTH,BUFFER
0000 CLEAR X B410
0002 +LDT LENGTH 77100000
0006 WLOOP 1D =X'05’ E32012
0009 JEQ WLOOP 332FFA
000C +LDCH BUFFER,X 53900000
0010 WD =X'05’ DF2008
0013 TIXR T B850
0015 JLT WLOOP 3B2FEE
0018 RSUB 4F0000

END FIRST
001B * =X'05’ 05

41

L L

“.* Records for Object Program

= The assembler must include information in the object

program that will cause the loader to insert proper
values where they are required

= Define record
= Coal. 1 D
= Col.2-7 Name of external symbol defined in this control section
= Col.8-13 Redative address within this control section (hexadeccimal)
= Col.14-73 Repeat information in Col. 2-13 for other external symbols

s Refer record
m COIl R

= Col.2-7 Name of external symbol referred to in this control section
= Col.8-73 Name of other external reference symbols

42

L L
AL L

Records for Object Program

= Modification record

Col.1 M

Col. 2-7 Starting address of the field to be modified (hexiadecimal)

Col. 8-9 Length of the field to be modified, in half-bytes (hexadeccimal)

Col.11-16 External symbol whose value is to be added to or subtracted
from the indicated field

Control section name is automatically an external symboal, i.e.
It isavailable for use in Modification records.

43

L L

“.* Object Program of Figure 2.15

COPY
HCOPY 000000001033

DBUFFER000033BUFENDO01033L ENGTH00002D

RRDREC WRREC

10000001D1720274B1000000320232900003320074B1000003F2FEC0320160F2016
100001D0DO100030F200A4B1000003E2000
100003003454F 46

M00000405+RDREC
M00001105+WRREC
M00002405+WRREC

E000000

44

L L

“.* Object Program of Figure 2.15

RDREC
HRDREC 000000000028

RBUFFERLENGTHBUFEND
10000001 DB410B400B44077201FE3201B332FFADB2015A00433200957900000B850
T00001DOE3B2FE9131000004F000QF 1000000

M00001805+BUFFER
M00002105:+LENGTH
M00002806+BUFEND
M00002806—BUFFER :F'BUFEND"BUFFER
E

WRREC
HWRREC 00000000001C

RLENGTHBUFFER
10000001CB410/7100000E3201232FFA53900000DF 2008B8503B2FEE4F000005
M00000305+LENGTH
MO0000DO5+BUFFER

E

45

. . Expressionsin
“.* Multiple Control Sections

s Extended restriction

= Bothtermsin each pair of an expression must be within the same
control section
« Legal : BUFEND- BUFFER

« | Il egal: RDREC COPY

= How to enforce this restriction

= When an expression involves external references, the assembler
cannot determine whether or not the expression islegal.

= Theassembler evaluates all of the terms it can, combines these to
form an initial expression value, and generates Modification
records.

= Theloader checks the expression for errors and finishes the
evaluation.

46

