

### Chapter 2 Assemblers

-- 2.2 Machine-Dependent Assembler Features



- Instruction format and addressing mode
- Program relocation



### Instruction format and addressing mode

- PC-relative or Base-relative addressing
  - op m
- Indirect addressing
  - op @m
- Immediate addressing
  - op #c
- Extended format
  - +op m
- Index addressing
  - op m,x
- Register-to-register instructions



## Example SIC/XE program (Figure 2.6, pp.58)

| Loc  | Source statement |       | Object code   |          |
|------|------------------|-------|---------------|----------|
| 0000 | COPY             | START | 0_            |          |
| 0000 | FIRST            | STL   | RETADR        | 17202D   |
| 0003 |                  | LDB   | #LENGTH       | 69202D   |
|      |                  | BASE  | LENGTH        |          |
| 0006 | CLOOP            | +JSUB | RDREC         | 4B101036 |
| 000A |                  | LDA   | LENGTH        | 032026   |
| 000D |                  | COMP  | #0            | 290000   |
| 0010 |                  | JEQ   | <b>ENDFIL</b> | 332007   |
| 0013 |                  | +JSUB | WRREC         | 4B10105D |
| 0017 |                  | J     | CLOOP         | 3F2FEC   |
| 001A | ENDFIL           | LDA   | EOF           | 032010   |
| 001D |                  | STA   | BUFFER        | 0F2016   |
| 0020 |                  | LDA   | #3_           | 010003   |
| 0023 |                  | STA   | LENGTH        | 0F200D   |
| 0026 |                  | +JSUB | WRREC         | 4B10105D |
| 002A |                  | J     | @RETADR       | 3E2003   |
| 002D | EOF              | BYTE  | C'EOF'        | 454F46   |
| 0030 | RETADR           | RESW  | 1             |          |
| 0033 | LENGTH           | RESW  | 1             |          |
| 0036 | BUFFER           | RESB  | 4096          |          |



## Example SIC/XE program (Figure 2.6, pp.58)

|      |       | SUBROUTINE T | O READ RECORD IN | TO BUFFER |
|------|-------|--------------|------------------|-----------|
| 1036 | RDREC | CLEAR        | X                | B410      |
| 1038 |       | CLEAR        | Α                | B400      |
| 103A |       | CLEAR        | S                | B440      |
| 103C |       | +LDY         | #4096            | 75101000  |
| 1040 | RLOOP | TD           | INPUT            | E32019    |
| 1043 |       | JEQ          | RLOOP            | 332FFA    |
| 1046 |       | TD           | INPUT            | DB2013    |
| 1049 |       | COMPR        | A,S              | A004      |
| 104B |       | JEQ          | EXIT             | 332008    |
| 104E |       | STCH         | BUFFER,X         | 57C003    |
| 1051 |       | TIXR         | Т                | B850      |
| 1053 |       | JLT          | RLOOP            | 3B2FEA    |
| 1056 | EXIT  | STX          | LENGTH           | 134000    |
| 1059 |       | RSUB         |                  | 4F0000    |
| 105C | INPUT | BYTE         | X'F1'            | F1        |



## Example SIC/XE program (Figure 2.6, pp.58)

•

#### SUBROUTINE TO READ RECORD INTO BUFFER

| 105D | WRREC  | CLEAR | X        | B410   |
|------|--------|-------|----------|--------|
| 105F |        | LDT   | LENGTH   | 774000 |
| 1062 | WLOOP  | TD    | OUTPUT   | E32011 |
| 1065 |        | JEQ   | WLOOP    | 332FFA |
| 1068 |        | LDCH  | BUFFER,X | 53C003 |
| 106B |        | WD    | OUTPUT   | DF2008 |
| 106E |        | TIXR  | Т        | B850   |
| 1070 |        | JLT   | WLOOP    | 3B2FEF |
| 1073 |        | RSUB  |          | 4F0000 |
| 1076 | OUTPUT | BYTE  | X'05'    | 05     |
|      |        | END   | FIRST    |        |



5 COPY START (

- COPY: program name
- START directive specifies a beginning program address
- 0: a relocatable program
  - Tread as if the program is loaded starting at address 0



#### Register-register instruction

- Convert the mnemonic name to their number equivalents
  - Register name (A, X, L, B, S, T, F, PC, SW) and their values (0,1, 2, 3, 4, 5, 6, 8, 9)
  - May implement in a separate table or preload the register names and values to SYMTAB





#### Address translation

- Most register-memory instructions use program counter relative or base relative addressing
  - Format 3: 12-bit address field
    - base-relative: 0~4095
    - pc-relative: -2048~2047
  - Format 4: 20-bit address field
- Addressing mode (Refer to Chapter 1)

| Mode                 | Indication | Operand value |
|----------------------|------------|---------------|
| Immediate addressing | n=0, i=1,  | TA            |
| Indirect addressing  | n=1, i=0   | ((TA))        |
| Simple addressing    | n=0, i=0   | Standard SIC  |
|                      | n=1, i=1   | (TA)          |



#### Program counter relative

#### Calculate displacement

- Displacement must be small enough to fit in a 12-bit field (-2048..2047)
- In SIC, PC is advanced *after each instruction is fetched* and *before it is executed*; *i.e.*, PC contains the address of the next instruction.

10 0000

FIRST

STL

RETADR

RETADR is at address  $(0030)_{16}$ After the SIC fetches this instruction,  $(PC) = (0003)_{16}$ TA = (PC) + disp  $\Rightarrow$  disp = TA - (PC) = 0030 - 0003 =  $(02D)_{16}$ 

 $\begin{array}{c} \text{disp} \\ \text{02D} \Rightarrow 17202D \end{array}$ 



#### Program counter relative

```
40
        0017
                        J
                                         CLOOP
        CLOOP is at address (0006)<sub>16</sub>
        After the SIC fetches this instruction, (PC) = (001A)_{16}
        TA = (PC) + disp \Rightarrow disp = TA - (PC) = 0006 - 001A = (FEC)_{16}
            op nixbpe disp
                                                             12-bits
         001111 1 1 0 0 1 0 FEC \Rightarrow 3F2FEC
70
       002A
                                         @RETADR
                                                ——Indirect addressing
        CLOOP is at address (0030)<sub>16</sub>
        After the SIC fetches this instruction, (PC) = (002D)_{16}
        TA = (PC) + disp \Rightarrow disp = TA - (PC) = 0030 - 002D = (0003)_{16}
            op nixbpe disp
         001111 \quad 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 003 \quad \Rightarrow 3E2003
```

### Base relative

- 12 bits displacement (0 ~ 4095)
- Base register is under the control of the programmer.
  - The programmer must tell the assembler what the base register will contain during execution of program.
- Assembler directive
  - **BASE**: tell the assembler what the base register will contain
  - **NOBASE**: tell the assembler that the contents of the base register can no longer be used for addressing.
  - When based register can be relied upon, the assembler can use base relative, otherwise only the PC-relative can be used
  - The assembler first choose PC-relative;
     if displacement is not enough, choose base relative

```
LDB #LENGTH (instruction)
BASE LENGTH (directive)
:
NOBASE
```

### Base relative

```
12
   0003
                LDB
                         #LENGTH
                                     69202D
13
                 BASE
                         LENGTH
100 0033 LENGTH RESW
105 0036 BUFFER
                RESB
                          4096
160 104E
                STCH
                         BUFFER,X
                                     57C003
165 1051
                                   B850
                TIXR
```

PC-relative is no longer applicable

qo

- $(0036)_{16} (1051)_{16} = (-1015)_{16} < (-0800)_{16} = (-2048)_{10}$
- LDB loads the address of LENGTH into base register during execution
- BASE directive explicitly informs the assembler that the base register will contain the address of LENGTH

BUFFER is at address 
$$(0036)_{16}$$
  
 $(B) = (0033)_{16}$   
 $disp = 0036 - 0033 = (0003)_{16}$   
 $n i \times b p e \qquad disp$   
 $1 1 1 0 0 \qquad 003 \Rightarrow 570003$ 



20 000A LDA LENGTH 032026 : : 175 1056 EXIT STX LENGTH 134000

- Line 20, using PC-relative
- Consider Line 175
  - If we use PC-relative
    - LENGTH at address 0033
    - Disp = TA (PC) = 0033 1059 = EFDA
    - PC relative is no longer applicable, try to use BASE relative addressing



### Choice of Addressing Modes

- 1. Programmer must specify the extended format (4-byte) by using the prefix +
- 2. If not, assembler first attempts PC-relative
- If the required displacement is out of range, use base relative addressing can be use
- 4. Otherwise, generate an error message



#### Immediate addressing

- No memory reference is involved
- If immediate mode is specified, the target address becomes the operand

```
0020
55
                                   #3
                     LDA
                                            -Immediate operand
      TA = (0003)_{16}
                 nixbpe
                                   disp
          op
                 0 1 0 0 0
        000000
                                    003
                                           \Rightarrow 010003
      103C
                                   #4096
133
                     +LDT
                                       Extended instruction format
      TA = (01000)_{16}
                 nixbpe
                                   disp(20 bits)
          qo
        011101
                                    01000 \Rightarrow 75101000
```



### Immediate & PC-relative addressing

```
12 0003 LDB #LENGTH

LENGTH is at address 0033

TA = (PC) + disp \Rightarrow disp = 0033 - 0006 = (002D)<sub>16</sub>

op n i x b p e disp

011010 0 1 0 0 1 0 02D \Rightarrow 69202D
```



#### Indirect & PC-relative addressing



### Program relocation

#### Why

- It is desirable to load and run several programs at the same time
- The system must be able to load programs into memory wherever there is room
- The exact starting address of the program is not known until load time



### Example of program relocation (Figure 2.7, pp.63)





#### Program relocation

#### Absolute Program

- Program with starting address specified at assembly time
- The address may be invalid if the program is loaded into somewhere else.
- Example: (Figure 2.2, pp.47)

55 101B L

LDA THREE

00<mark>102D</mark>

Calculate based on the starting address 1000

#### Reload the program starting at 3000

55 101B

LDA

THREE

00302D

The absolute address should be modified



#### Program relocation

- The only parts of the program that require modification at load time are those that specify direct addresses
- The rest of the instructions need not be modified
  - Not a memory address (immediate addressing)
  - PC-relative, Base-relative
- From the object program, it is not possible to distinguish the address and constant
  - The assembler must keep some information to tell the loader
  - The object program that contains the modification record is called a relocatable program



### The way to solve the relocation problem

- For an address label, its address is assigned relative to the start of the program (START 0)
- Produce a Modification record to store the starting location and the length of the address field to be modified.
- The command for the loader must also be a part of the object program



#### Modification record

# Modification record Col. 1 M Col. 2-7 Starting location of the address field to be modified, relative to the beginning of the program (Hex) Col. 8-9 Length of the address field to be modified, in half-bytes (Hex)

- One modification record for each address to be modified
- The length is stored in half-bytes (4 bits)
- The starting location is the location of the byte containing the leftmost bits of the address field to be modified.
- If the field contains an odd number of half-bytes, the starting location begins in the middle of the first byte.

### Relocatable Object Program (Figure 2.8, pp.65)

```
HCOPY 000000010177 5 half-bytes

T00000001D17202D69202D4B1010360320262900003320074B10105D3F2FEC032010

T00001D130F20160100030F200D4B10105D3E2003454F46

T0010361DB410B400B44075101000E32019332FFADB2013A00433200857C003B850

T0010531D3B2FEA1340004F0000F1B410774000E32011332FFA53C003DF2008B850

T001070073B2FEF4F000005

M00000705

M00000705

M00000705

E000000
```