

Undergraduate Topics in Computer
Science

Undergraduate Topics in Computer Science (UTiCS) delivers high-quality instructional content for un-
dergraduates studying in all areas of computing and information science. From core foundational and
theoretical material to final-year topics and applications, UTiCS books take a fresh, concise, and mod-
ern approach and are ideal for self-study or for a one- or two-semester course. The texts are all authored
by established experts in their fields, reviewed by an international advisory board, and contain numer-
ous examples and problems. Many include fully worked solutions.

For further volumes:
http://www.springer.com/series/7592

http://www.springer.com/series/7592

Joe Pitt-Francis � Jonathan Whiteley

Guide to Scientific
Computing in C++

Dr. Joe Pitt-Francis
Department of Computer Science
University of Oxford
Oxford, UK

Dr. Jonathan Whiteley
Department of Computer Science
University of Oxford
Oxford, UK

Series editor
Ian Mackie

Advisory board
Samson Abramsky, University of Oxford, Oxford, UK
Karin Breitman, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
Chris Hankin, Imperial College London, London, UK
Dexter Kozen, Cornell University, Ithaca, USA
Andrew Pitts, University of Cambridge, Cambridge, UK
Hanne Riis Nielson, Technical University of Denmark, Kongens Lyngby, Denmark
Steven Skiena, Stony Brook University, Stony Brook, USA
Iain Stewart, University of Durham, Durham, UK

ISSN 1863-7310 Undergraduate Topics in Computer Science
ISBN 978-1-4471-2735-2 e-ISBN 978-1-4471-2736-9
DOI 10.1007/978-1-4471-2736-9
Springer London Dordrecht Heidelberg New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2012931858

© Springer-Verlag London Limited 2012
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as per-
mitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publish-
ers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

http://www.springer.com
http://www.springer.com/mycopy

Preface

Many books have been written on the C++ programming language, varying across
a spectrum from the very practical to the very theoretical. This book certainly lies
at the practical end of this spectrum, and has a particular focus for the practical
treatment of this language: scientific computing.

Traditionally, Fortran and MATLAB®1 have been the languages of choice for
scientific computing applications. The recent development of complex mathemati-
cal models—in fields as diverse as biology, finance, and materials science, to name
but a few—has driven a need for software packages that allow computational sim-
ulations based on these models. The complexity of the underlying models, together
with the need to exchange code between coworkers, has motivated programmers to
develop object-oriented code (often written in C++) for these simulation packages.
The computational demands of these simulations may require software to be writ-
ten for parallel computing facilities, typically using the Message Passing Interface
(MPI). The need to train programmers in the skills to program applications such as
these led to the development of a graduate level course C++ for Scientific Comput-
ing, taught by the authors of this book, at the University of Oxford.

This book provides a guide to C++ programming in scientific computing. In
contrast to many other books on C++, features of the language are demonstrated
mainly using examples drawn from scientific computing. Object-orientation is first
mentioned in Chap. 1 where we briefly describe what this phrase—and other re-
lated terms such as inheritance—mean, before postponing any further discussion
of object-orientation or related topics until Chap. 6. In the intervening chapters un-
til object-orientation reappears, we present what is best described as “procedural
programming in C++”, covering variables, flow of control, input and output, point-
ers (including dynamic allocation of memory), functions and reference variables.
Armed with this grounding in C++ we then introduce classes in Chaps. 6 and 7. In
these two chapters, where the main features of object-orientation are showcased, we
initially, for the sake of clarity, abandon our principle of using examples drawn from
scientific computing. Once the topics have been presented however, we resume our
strategy of demonstrating concepts through scientific computing examples. More
advanced C++ features such as templates and exceptions are introduced in Chaps. 8
and 9. Having introduced the features of C++ required for scientific computing, the

1MATLAB is a registered trademark of The MathWorks, Inc.

v

vi Preface

remainder of the book focuses on the application of these features. In Chap. 10, we
begin to develop a collection of classes for linear algebra calculations: these classes
are then developed further in the exercises at the end of this chapter. Chapter 11
presents an introduction to parallel computing using MPI. Finally, in Chap. 12, we
discuss how an object-oriented library for solving second order differential equa-
tions may be constructed. The importance of a clear programming style to minimise
the introduction of errors into code is stressed throughout the book.

This book is aimed at programmers of all levels of expertise who wish to write
scientific computing programs in C++. Experience with a computer to the level
where files can be stored and edited is expected. A basic knowledge of mathematics,
such as operations between vectors and matrices, and the Newton–Raphson method
for finding the roots of nonlinear equations would be an advantage.

The material presented here has been enhanced significantly by discussions about
C++ with colleagues, too numerous to list here, in the Department of Computer Sci-
ence at the University of Oxford. A special mention must, however, be made of the
Chaste2 programming team: particular gratitude should be expressed to Jonathan
Cooper for readily sharing with us his impressively wide and deep knowledge of
the C++ language. Other members of the team who have significantly helped clarify
our thoughts on the C++ language are Miguel Bernabeu, James Osborne, Pras Path-
manathan and James Southern. We should also thank students from both the M.Sc.
in Mathematical Modelling and Scientific Computing and the Doctoral Training
Centres at the University of Oxford for unwittingly aiding our understanding of the
language through asking pertinent questions.

Finally, it is always important to remember—especially when debugging a par-
ticularly tiresome code—that there is far more to life than C++ programming for
scientific computing. We would both like to thank our families for their love and
support, especially during the writing of this book.

Joe Pitt-Francis
Jonathan Whiteley

Oxford, UK

2The Cancer, Heart And Soft Tissue Environment (Chaste) is an object-oriented package, written
in C++, for simulations in the field of biology. More details on this package may be found at
http://www.cs.ox.ac.uk/chaste/.

http://www.cs.ox.ac.uk/chaste/

Contents

1 Getting Started . 1
1.1 A Brief Introduction to C++ . 1

1.1.1 C++ is “Object-Oriented” 1
1.1.2 Why You Should Write Scientific Programs in C++ 2
1.1.3 Why You Should Not Write Scientific Programs in C++ . . 4
1.1.4 Scope of This Book . 4

1.2 A First C++ Program . 5
1.3 Compiling a C++ Program . 6

1.3.1 Integrated Development Environments 6
1.3.2 Compiling at the Command Line 7
1.3.3 Compiler Flags . 8

1.4 Variables . 10
1.4.1 Basic Numerical Variables 10
1.4.2 Other Numerical Variables 12
1.4.3 Mathematical Operations on Numerical Variables 13
1.4.4 Division of Integers . 15
1.4.5 Arrays . 16
1.4.6 ASCII Characters . 17
1.4.7 Boolean Variables . 17
1.4.8 Strings . 18

1.5 Simple Input and Output . 19
1.5.1 Basic Console Output . 19
1.5.2 Keyboard Input . 20

1.6 The assert Statement . 21
1.7 Tips: Debugging Code . 22
1.8 Exercises . 23

2 Flow of Control . 25
2.1 The if Statement . 25

2.1.1 A Single if Statement 26
2.1.2 Example: Code for a Single if Statement 27
2.1.3 if–else Statements . 27
2.1.4 Multiple if Statements 27
2.1.5 Nested if Statements . 28

vii

viii Contents

2.1.6 Boolean Variables . 28
2.2 Logical and Relational Operators 29
2.3 The while Statement . 30
2.4 Loops Using the for Statement 32

2.4.1 Example: Calculating the Scalar Product of Two Vectors . . 34
2.5 The switch Statement . 34
2.6 Tips: Loops and Branches . 35

2.6.1 Tip 1: A Common Novice Coding Error 35
2.6.2 Tip 2: Counting from Zero 36
2.6.3 Tip 3: Equality Versus Assignment 37
2.6.4 Tip 4: Never Ending while Loops 38
2.6.5 Tip 5: Comparing Two Floating Point Numbers 39

2.7 Exercises . 39

3 File Input and Output . 43
3.1 Redirecting Console Output to File 43
3.2 Writing to File . 44

3.2.1 Setting the Precision of the Output 46
3.3 Reading from File . 47
3.4 Reading from the Command Line 49
3.5 Tips: Controlling Output Format 50
3.6 Exercises . 51

4 Pointers . 55
4.1 Pointers and the Computer’s Memory 55

4.1.1 Addresses . 55
4.1.2 Pointer Variables . 56
4.1.3 Example Use of Pointers 56
4.1.4 Warnings on the Use of Pointers 57

4.2 Dynamic Allocation of Memory for Arrays 58
4.2.1 Vectors . 59
4.2.2 Matrices . 60
4.2.3 Irregularly Sized Matrices 61

4.3 Tips: Pointers . 62
4.3.1 Tip 1: Pointer Aliasing . 62
4.3.2 Tip 2: Safe Dynamic Allocation 63
4.3.3 Tip 3: Every new Has a delete 63

4.4 Exercises . 64

5 Blocks, Functions and Reference Variables 65
5.1 Blocks . 65
5.2 Functions . 66

5.2.1 Simple Functions . 66
5.2.2 Returning Pointer Variables from a Function 69
5.2.3 Use of Pointers as Function Arguments 70
5.2.4 Sending Arrays to Functions 71

Contents ix

5.2.5 Example: A Function to Calculate the Scalar Product of
Two Vectors . 73

5.3 Reference Variables . 74
5.4 Default Values for Function Arguments 75
5.5 Function Overloading . 76
5.6 Declaring Functions Without Prototypes 78
5.7 Function Pointers . 79
5.8 Recursive Functions . 81
5.9 Modules . 82
5.10 Tips: Code Documentation . 83
5.11 Exercises . 85

6 An Introduction to Classes . 87
6.1 The Raison d’Être for Classes . 87

6.1.1 Problems That May Arise When Using Modules 88
6.1.2 Abstraction, Encapsulation and Modularity Properties of

Classes . 88
6.2 A First Example Simple Class: A Class of Books 89

6.2.1 Basic Features of Classes 89
6.2.2 Header Files . 91
6.2.3 Setting and Accessing Variables 92
6.2.4 Compiling Multiple Files 94
6.2.5 Access Privileges . 96
6.2.6 Including Function Implementations in Header Files 97
6.2.7 Constructors and Destructors 98
6.2.8 Pointers to Classes . 103

6.3 The friend Keyword . 103
6.4 A Second Example Class: A Class of Complex Numbers 105

6.4.1 Operator Overloading . 105
6.4.2 The Class of Complex Numbers 106

6.5 Some Additional Remarks on Operator Overloading 112
6.6 Tips: Coding to a Standard . 112
6.7 Exercises . 114

7 Inheritance and Derived Classes . 117
7.1 Inheritance, Extensibility and Polymorphism 117
7.2 Example: A Class of E-books Derived from a Class of Books . . . 118
7.3 Access Privileges for Derived Classes 120
7.4 Classes Derived from Derived Classes 121
7.5 Run-Time Polymorphism . 122
7.6 The Abstract Class Pattern . 124
7.7 Tips: Using a Debugger . 126
7.8 Exercises . 127

8 Templates . 131
8.1 Templates to Control Dimensions and Verify Sizes 131

x Contents

8.2 Templates for Polymorphism . 133
8.3 A Brief Survey of the Standard Template Library 134

8.3.1 Vectors . 134
8.3.2 Sets . 137

8.4 Tips: Template Compilation . 139
8.5 Exercises . 140

9 Errors and Exceptions . 141
9.1 Preconditions . 142

9.1.1 Example: Two Implementations of a Graphics Function . . 142
9.2 Three Levels of Errors . 143
9.3 Introducing the Exception . 144
9.4 Using Exceptions . 145
9.5 Tips: Test-Driven Development 146
9.6 Exercises . 147

10 Developing Classes for Linear Algebra Calculations 151
10.1 Requirements of the Linear Algebra Classes 151
10.2 Constructors and Destructors . 156

10.2.1 The Default Constructor 156
10.2.2 The Copy Constructor . 156
10.2.3 A Specialised Constructor 157
10.2.4 Destructor . 157

10.3 Accessing Private Class Members 157
10.3.1 Accessing the Size of a Vector 158
10.3.2 Overloading the Square Bracket Operator 158
10.3.3 Read-Only Access to Vector Entries 158
10.3.4 Overloading the Round Bracket Operator 158

10.4 Operator Overloading for Vector Operations 158
10.4.1 The Assignment Operator 159
10.4.2 Unary Operators . 159
10.4.3 Binary Operators . 159

10.5 Functions . 159
10.5.1 Members Versus Friends 159

10.6 Tips: Memory Debugging Tools 160
10.7 Exercises . 161

11 An Introduction to Parallel Programming Using MPI 165
11.1 Distributed Memory Architectures 165
11.2 Installing MPI . 167
11.3 A First Program Using MPI . 167

11.3.1 Essential MPI Functions 168
11.3.2 Compiling and Running MPI Code 169

11.4 Basic MPI Communication . 171
11.4.1 Point-to-Point Communication 171
11.4.2 Collective Communication 174

Contents xi

11.5 Example MPI Applications . 180
11.5.1 Summation of Series . 180
11.5.2 Parallel Linear Algebra 182

11.6 Tips: Debugging a Parallel Program 186
11.6.1 Tip 1: Make an Abstract Program 186
11.6.2 Tip 2: Datatype Mismatch 186
11.6.3 Tip 3: Intermittent Deadlock 187
11.6.4 Tip 4: Almost Collective Communication 187

11.7 Exercises . 188

12 Designing Object-Oriented Numerical Libraries 193
12.1 Developing the Library for Ordinary Differential Equations 194

12.1.1 Model Problems . 194
12.1.2 Finite Difference Approximation to Derivatives 195
12.1.3 Application of Finite Difference Methods to Boundary

Value Problems . 197
12.1.4 Concluding Remarks on Boundary Value Problems in One

Dimension . 199
12.2 Designing a Library for Solving Boundary Value Problems 200

12.2.1 The Class SecondOrderOde 200
12.2.2 The Class BoundaryConditions 201
12.2.3 The Class FiniteDifferenceGrid 202
12.2.4 The Class BvpOde . 203
12.2.5 Using the Class BvpOde 205

12.3 Extending the Library to Two Dimensions 205
12.3.1 Model Problem for Two Dimensions 207
12.3.2 Finite Difference Methods for Boundary Value Problems

in Two Dimensions . 207
12.3.3 Setting Up the Linear System for the Model Problem . . . 209
12.3.4 Developing the Classes Required 210

12.4 Tips: Using Well-Written Libraries 210
12.5 Exercises . 211

Appendix A Linear Algebra . 213
A.1 Vectors and Matrices . 213

A.1.1 Operations Between Vectors and Matrices 214
A.1.2 The Scalar Product of Two Vectors 215
A.1.3 The Determinant and the Inverse of a Matrix 215
A.1.4 Eigenvalues and Eigenvectors of a Matrix 216
A.1.5 Vector and Matrix Norms 216

A.2 Systems of Linear Equations . 217
A.2.1 Gaussian Elimination . 217
A.2.2 The Thomas Algorithm 222
A.2.3 The Conjugate Gradient Method 222

xii Contents

Appendix B Other Programming Constructs You Might Meet 225
B.1 C Style Output . 225
B.2 C Style Dynamic Memory Allocation 226
B.3 Ternary ?: Operator . 226
B.4 Using Namespace . 227
B.5 Structures . 228
B.6 Multiple Inheritance . 228
B.7 Class Initialisers . 229

Appendix C Solutions to Exercises . 231
C.1 Matrix and Linear System Classes 231
C.2 ODE Solver Library . 240

Further Reading . 245
Mathematical Methods and Linear Algebra 245
C++ Programming . 245
The Message-Passing Interface (MPI) 245

Index . 247

1Getting Started

In this introductory chapter, you will learn a little bit about the features of C++ in
terms of some of the common “buzzwords” you may have heard about the language,
and in terms of its strengths and weaknesses. You will also learn how to edit, compile
and run your first C++ program. This chapter also includes information on variables
and simple ways of getting data into and out of your programs.

The chapter concludes with tips on how you might, as a novice C++ programmer,
go about debugging your programs. We have included tips with every chapter in
this book. They are presented at an increasing level of sophistication—this should
match your gaining knowledge as you read through the book and attempt some of
the exercises.

1.1 A Brief Introduction to C++

A very large number of programming languages for writing computer software exist.
If one of these programming languages was the most suitable for all purposes, then
it would be expected that everyone would use this language, and all other languages
would eventually become obsolete. This, however, is certainly not the case. It seems
appropriate to begin this book by describing the key features of C++, allowing us
to explain why C++ is a suitable programming language for scientific computing
applications and why it isn’t the only suitable choice of language.

1.1.1 C++ is “Object-Oriented”

You may have heard that C++ is an “object-oriented” language and have wondered
what that means. What marks a language which is object-oriented out from one that
is not? Fundamentally, it is because the basic unit of the language is an object or
class—an entity which brings together related functionality and data. We will probe
the ideas behind objects and classes more deeply in Chap. 6.

J. Pitt-Francis, J. Whiteley, Guide to Scientific Computing in C++,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-4471-2736-9_1, © Springer-Verlag London Limited 2012

1

http://dx.doi.org/10.1007/978-1-4471-2736-9_1

2 1 Getting Started

Many books on C++ start by defining object-orientation more explicitly. If this
book were aimed at a computer science or software engineering audience, then we
would find it necessary to define some specific concepts related to object-orien-
tation. We would need to convince you of the importance of the following concepts.
• Modularity. All the data of a particular object, and the operations that we perform

on this object, are held in one or two files, and can be worked on independently.
• Abstraction. The essential features and functionality of a class are put in one

place and the details of how they work are unimportant to the user of the class.
For example, if you are using a linear system library to solve matrix equations
you should not need to know the precise details of how matrices are laid out in
memory or the exact order that a numerical solver performs its operations. You
should only need to know how to use the functionality of the library.

• Encapsulation. The implementation of an object is kept hidden from the user of
the class. This is not only about clarity (abstracting away the detail). It is also
about preventing the user from accidentally amending internal workings of, for
example, a linear solver, stopping it from working effectively.

• Extensibility. Functionality can be reused with selected parts extended. For ex-
ample, much of the core of a linear solver is in matrix-vector products and scalar
products—this type of functionality need only be implemented once, then other
parts of the program can build on it.

• Polymorphism. The same code can be used for a variety of objects. For example,
we would like to use similar looking C++ code to raise a matrix of complex
numbers to a given power as we would to raise a real number to a given power—
even though the basic arithmetic operations “behind the scenes” are different.

• Inheritance. This, perhaps the most important feature of object-orientation, al-
lows for code reuse, extensibility and polymorphism. For example, a new linear
solver for singular matrix systems will share many of the features of a basic lin-
ear solver. Inheritance allows the new solver to derive functionality from the basic
solver, and then build on this functionality.
We are not going to discuss these terms in any more detail at this time. It is not

that these things are unimportant. Quite the contrary—all these concepts add up to
make C++ a very powerful language. However, we can cover the basics of program-
ming without object-orientation. We will describe classes and objects in Chap. 6
and revisit some of these concepts. Then we can show exactly why inheritance, for
instance, is so powerful when we come to explain it in Chap. 7.

1.1.2 Why You Should Write Scientific Programs in C++

Since you have selected a book with the words “C++” and “Scientific Computing”
in the title, then the chances are that you have decided to start writing your scientific
programs in C++. Perhaps not. Perhaps you are considering your options, or perhaps
the choice of language has been foisted on you.

It is not our place to fight battles about which language is the very best, especially
because the choice of language for a program will often depend on the problem that
is being solved. In the field of numerical scientific programming, there are many

1.1 A Brief Introduction to C++ 3

languages being used, with most scientists opting for MATLAB®,1 C/C++ or For-
tran.

The first and most compelling reason for using C++ (as well as C and Fortran)
is because they are fast. That is, with careful programming and optimisations, they
can be compiled to a machine code program which is able to use the full power of
the available hardware. Many scripting languages (such as MATLAB and Python)
are interpreted languages, meaning that the code which you write is translated to
machine code at run time. Other modern languages (such as Java and C#) com-
pile halfway—to a hardware-independent byte-code which is then interpreted at run
time. Run time interpretation means that some of the computer’s power is spent
on the conversion process and also that it is harder to apply optimisations. Nowa-
days MATLAB, Python and Java implementations use clever tricks such as caching
compilation steps and just-in-time compilation to make programs run faster. Nev-
ertheless, these tricks require computational effort and so these languages may not
fully utilise the power of all hardware.

A second reason for using C++ is that there is a wealth of numerical libraries for
scientific computing in C++ and related languages. Lots of numerical algorithms
were established in the 1950s and were then incorporated into software libraries
(such as EISPACK and LINPACK) in the 1970s.2 If you write your own code using
well-established, well-tested software then you are building on decades of experi-
ence and improvement.

A third reason for choosing to write in C++ is that there is a wide-range of open
source and commercial tools to support you. We used the free GNU compiler tool-
set to test the programs in this book and you can use any C++ compiler to compile
them for your computer. In contrast, if we were distributing MATLAB programs,
you would need to have MATLAB and a licence installed on your computer because
it is a proprietary product. There are similar open source products (such as GNU
Octave) but there is no guarantee that a MATLAB program will produce the same
answer when run in Octave. Because it is closed source, the meaning of a program
can change between versions of MATLAB. For example, when just-in-time compila-
tion was introduced in MATLAB 7 the operational semantics of the language subtly
changed. This meant that a small minority of MATLAB programs which were known
to work well with one version of MATLAB could produce incorrect results, errors or
warnings on another version.

A fourth reason for C++ is that it has a flexible memory management model. In
a Java program, some of the system memory is used in the interpretation and you
rely on a garbage collector to tidy up memory which you are no longer using, and
so you may not be able to predict how much memory a program is going to need.
In C++ you can make this prediction, but this is a double-edged sword because you
are also responsible for making sure that memory is managed properly.

1MATLAB is a registered trademark of The MathWorks, Inc.
2The original version of MATLAB was written in Fortran and was intended as a simple interface
into parts of the EISPACK and LINPACK Fortran libraries.

4 1 Getting Started

A final reason to program in C++ is that it is an object-oriented language. We
haven’t yet told you what this means exactly, but it is widely held that writing in an
object-oriented style leads to programs which are easier to understand, to extend, to
maintain and to refactor.

1.1.3 Why You Should Not Write Scientific Programs in C++

It is worth stressing that C++ is not the best language for every occasion. Some
people say that other languages may be faster. Many scientific programmers believe
that Fortran will always give the best performance in terms of raw speed and would
reject C++ on the basis that features such as pointer chasing and virtual method
look-up (don’t worry if you haven’t heard of these terms, or don’t know what they
mean—you may never need to!) result in the code being executed at suboptimal
speed. This may have some truth, but the fact that object-orientation leads to greater
readability (as mentioned above) makes it a reasonable compromise language. It can
be a very fast language and it is also a good language for readability.

Sometimes other languages are better for a specialised task. Scripting languages
such as Perl and Python are ideal for text processing and string manipulation. If you
need to sum columns of numbers from files then you could write a C++ program,
but a short, disposable script would be far quicker to implement.

Some languages are better for writing prototype programs or for plotting data.
MATLAB excels in the field of rapid prototyping—short programs to quickly explore
some algorithm or phenomenon. To test a particular linear algebra algorithm on a
range of matrices with various sizes and structures would take a few lines of MAT-
LAB, but in C++ you might have to write several files and compile against someone
else’s libraries. MATLAB also has the advantage of a fully-integrated graphical de-
velopment environment, making many programming tasks easy without having to
rely on extra tools. Furthermore, MATLAB has an in-built plotting environment, so
if you want to visualise the results of your algorithms quickly MATLAB might be
your best choice.

So C++ may not be the best choice of language in every situation. However,
there are many situations in which C++ has the ideal fit for a particular problem.
The discussion above may be enough to convince you that it is worth getting started
with C++.

1.1.4 Scope of This Book

Most C++ programs for scientific computing can be written very effectively by us-
ing only a fraction of the total capabilities of the language. This book focuses on
the aspects of C++ that you are most likely to utilise, or to encounter in other pro-
grammer’s code, for scientific computing applications. When writing your own pro-
grams, you may occasionally need to understand one of the more advanced features
of the language. In the Further Reading section at the end of this book, we direct the
reader to a collection of resources that provide a more comprehensive description of
the whole C++ language [5–8].

1.2 A First C++ Program 5

1.2 A First C++ Program

It is very common to introduce a programming language by using a program that
prints the text “Hello World” to the screen. A simple example of a C++ program
that does this is shown below.

The code in Listing 1.1 illustrates several basic features of C++ programs. In
line 1 of this code, we include the header file iostream. The name iostream
pertains to input and output streaming and is required in any C++ program that
inputs data from the keyboard or outputs data to the console, that is, the screen. The
second feature to note is that there is a section of code that:
• begins with the line of code “int main(int argc, char* argv[])”

(line 3 of this code);
• is followed by more code enclosed between curly brackets, { and }; and
• the code within the curly brackets ends with the statement “return 0;”.
The section of the code between curly brackets contains the instructions that we
want the computer to execute. The part of line 3 inside brackets allows us to execute
the code using user-specified arguments: we will postpone a discussion of this func-
tionality until Chap. 3. Note that comments have been inserted into the code in lines
5, 6, 7 and 9 to aid the reading of the code by humans: anything between the com-
ment opener “/*” and the comment closer “*/”, or any line that starts with “//” is
a comment, and is ignored when the code is converted into an executable, computer
readable file. We have used the extension .cpp for the code below to indicate that
the file HelloWorld.cpp is a C++ program. Choice of this extension is entirely
a matter of personal choice: other authors use the extensions .C, .c++, .cxx or
.cc.

We now focus on the purpose of lines 10 and 12: these lines of code each contain
an instruction to the computer, and are known as statements. Note that all statements
end with a semi-colon. It is sufficient for the time being for the reader to know that
line 10 is the line of code that directs the computer to print the contents within the

Listing 1.1 HelloWorld.cpp
�

1 #include <iostream>
2

3 int main(int argc, char* argv[])
4 {
5 /* This is a comment and will be ignored by the compiler
6 Comments are useful to explain in English what
7 the program does */
8

9 // Print "Hello World" to the screen
10 std::cout << "Hello World\n";
11

12 return 0;
13 }

6 1 Getting Started

quotation marks to the screen. The “\n” denotes a new line, and so the phrase “Hello
World”, followed by a new line, will be printed to the screen. The word cout is a
contraction of console output, that is, printing to the screen.

The word “int” at the start of line 3 indicates that the last line of the code within
curly brackets will return an integer value. This is carried out using the statement in
line 12 “return 0;”. Returning the value zero indicates to the computer that the
program has reached the end without encountering any problems.

Before moving on to explain how to get your computer to print Hello World
to your screen we pause to discuss some stylistic issues of which you should be
aware. You will see in the listing above that all lines of code within the curly brackets
have been indented. This is not compulsory. However, it is standard practice when
coding to indent these lines: this will become clearer in later chapters when we em-
bed code within more than one set of curly brackets. The number of spaces indented
is entirely for the programmer to decide: all spaces—termed “white space”—are ig-
nored when executing the code above. A final point is that lines in C++ may be as
long as the programmer wishes, and may run over the end of the line in the text ed-
itor used to write your C++ programs. For clarity, it is generally advisable to split a
potentially long line over several lines. We will demonstrate this later when writing
more complex statements.

The code in Listing 1.1 is a correct C++ program for printing the text “Hello
World” to the screen. However, before this program may be executed it must first
be translated into a format that the computer can read: this process is known as
compilation. We now explain what compilation is, and how to do it.

1.3 Compiling a C++ Program

Many readers will have experience of scientific computing in MATLAB. A key dif-
ference between C++ and MATLAB is that a C++ program must be compiled before
it can be executed. There are many different ways that compilation can be performed
which we now discuss.

1.3.1 Integrated Development Environments

As you take your first steps in learning a new programming language, you may not
want to invest a lot of time in installing new software and configuring applications to
help you develop programs. For this reason, we recommend that you begin writing
programs with your favourite text editor and a command line compiler (see the
following Sect. 1.3.2). However, as your programs and projects grow in size you
will need to manage multiple files each containing various parts of the program. This
becomes difficult when the number of files becomes large, and you may spend a lot
of time switching between files in order to look up what you called some function or
argument. At this point in your code development, we would recommend that you
switch to using an Integrated Development Environment (IDE).

1.3 Compiling a C++ Program 7

Examples of IDEs that are available for C++ programmers at the time of writing
include KDevelop and gbuilder for Linux, Microsoft Visual Studio for Windows,
XCode for Mac OS X, and Eclipse. Eclipse is open source, runs on most operat-
ing systems and is well-maintained by a community of developers. Because it was
originally built for developing Java programs, it is necessary to install a “C/C++
development tools plug-in” should it be used for developing C++ programs.

The functionality of various IDEs varies according to their level of sophistication,
but most present the seasoned programmer with several advantages over an old-
school compile at the command line approach. Common features of IDEs are listed
below. Don’t worry if you do not fully understand all the terms used: these will
become clear as you work through this book.
1. A program editor with syntax highlighting such as keyword colouring, automatic

code indentation and identification of illegal programming constructs.
2. Context aware editing, so that you immediately know what functionality is

present in one of your classes as you type its name.
3. Build automation, where your entire project code is managed so that changes to

small parts of a large program only result in small compilation steps. Build au-
tomation is traditionally done with a hand-crafted file known as a Makefile,
which we introduce in Sect. 6.2.4.1. Many IDEs analyse your code for depen-
dencies and then use a Makefile behind the scenes.

4. On-the-fly compilation gives the system the ability to constantly save and com-
pile your program as you write it.

5. “Step through” graphical debugging lets you walk through a program as it runs,
pause it at critical points, and examine the internal state of its variables. (More
information on debuggers is given in Sect. 7.7.)

6. Automatic code generation is particularly useful in IDEs for graphical tool devel-
opment. When the user selects that they want to include a button on a graphical
tool in their program some “boiler plate” code is generated including the func-
tions that are activated when the button is pressed—these are then filled in by the
programmer.

1.3.2 Compiling at the Command Line

When using the Linux operating system,3 C++ codes may be compiled and executed
at the command line within a terminal window. Many compilers—both open source
and commercially developed—are available. In this book, we assume that the reader

3If you are working on a Mac operating system, we recommend that you install the Xcode devel-
oper tool-set. This comes complete with a GNU C++ compiler which you can use on the command
line or within the developer environment. If you are working on a Windows operating system,
we recommend that you install MinGW (a minimal environment for using GNU tools within Win-
dows). Alternatively, you may want something more sophisticated built on MinGW such as Cygwin
(a Unix-like environment) or Code::Blocks (an open source windows development environment
containing MinGW and the GNU C++ compiler).

8 1 Getting Started

has access to the GNU gcc compiler. To ensure that this compiler is installed, open
a terminal window and type “which g++” followed by return. Hopefully the com-
puter will respond by reporting the location of this compiler, for example,

�

$ which g++
/usr/bin/g++
$

If the compiler is not installed, it may be downloaded from http://gcc.gnu.org/,
where instructions for installation may also be found.

To compile the code given in Listing 1.1, open a terminal window and create a
directory where code may be saved. Move into this directory, and save the code as
“HelloWorld.cpp”. In the same directory type

�

g++ -o HelloWorld HelloWorld.cpp

In the command above, g++ tells the computer that we want to use the GNU gcc
compiler for C++. The section of the command “-o HelloWorld” tells the com-
puter that we want to name the executable file “HelloWorld”. The “-o” is known
as the flag that the computer expects will be followed by the executable name, in
this case HelloWorld. The command ends by stating the C++ file that we wish
to compile. This command produces an executable file called HelloWorld . This
executable may be run by typing “./HelloWorld” inside the terminal. Running
this executable will result in the text “Hello World” being printed to the screen inside
the terminal.

If we were to compile the code using the command above, but without the flag
and the executable name, then an executable file would still be produced. A default
name would be allocated to the executable file. For many compilers, this default
executable name is a.out .

1.3.3 Compiler Flags

If we were to attempt to compile a code that was not written using correct C++ syn-
tax, then the compiler would report an error, and would not produce an executable
file. As such, the compiler can be thought of as a helpful tool that has the capability
to perform some validation of the correctness of the code.

Suppose we have written code where a calculation was stored as a variable, but
this variable is never subsequently used. Although this may be written with correct
C++ syntax it is likely that this is an error—we would expect that the result of every
calculation will subsequently be used somewhere in the code, or there would be
no point in performing this calculation. Compilers have the capacity to warn us of
unexpected occurrences such as this by the use of compiler flags. The compilation
command below will warn us of instances such as these.

http://gcc.gnu.org/

1.3 Compiling a C++ Program 9

�

g++ -Wall -o HelloWorld HelloWorld.cpp

The compiler flag -Wall above is a contraction of warning all. The compilation
command above will warn us of anything unexpected that is not actually an error,
but will still create an executable file. We give an example instance of a situation
in which the compiler will warn of a probable programming error as one of our
programming tips in Sect. 2.6.3. Suppose we want to be stricter than this, and want
the compiler to treat anything unexpected as an error and, therefore, not to create
an executable file when this occurs. This may be achieved using the compilation
command below.

�

g++ -Wall -Werror -o HelloWorld HelloWorld.cpp

There are a large number of compiler flags available for most compilers. At this
stage, there is no need to know about any more than the basic flags. We have shown
how to use compiler flags to perform some validation of the code written. We will
now discuss three more flags that are particularly valuable when writing scientific
computing applications. The first flag we discuss may be used to optimise the per-
formance of the executable file. The default is no optimisation. By using the “-O”
(upper case o) flag as shown below, the executable file should execute more quickly
although compilation may take longer.

�

g++ -O -o HelloWorld HelloWorld.cpp

If we are debugging a program, it is important that the executable and the debug-
ger have information about which line in the source code produced specific machine
instructions. Normally this information is not retained after compilation. In order to
produce a non-optimised version of the code with debugging information preserved,
we use the “-g” flag.

�

g++ -g -o HelloWorld HelloWorld.cpp

The last flag that we introduce here is one that allows us to link to a library
of mathematical routines. We instruct the compiler to link to this library using the
command below.

�

g++ -lm -o HelloWorld HelloWorld.cpp

We may use as many flags as we wish when compiling—simply list them one
after the other when compiling the code.

10 1 Getting Started

1.4 Variables

In the example code in Listing 1.1, we simply printed some text to the screen. In
most programs, especially scientific computing applications, we wish to store enti-
ties and perform operations on them. These entities are known as variables. In C++
programs, in common with most compiled languages, the variables must be declared
to be an appropriate type before they are used.

1.4.1 Basic Numerical Variables

The two most common types of variable that are used in scientific computing appli-
cations are integers and double precision floating point variables. Loosely speaking,
if a numerical variable does not—and never will—require a decimal point it may be
stored as an integer variable: if not it should be stored as a floating point variable.
If a code uses two integers denoted by row and column, and one double precision
floating point variable denoted by temperature, we may declare these before
they are used, and set their values, using the following code fragment.

Listing 1.2 Declaring variables
�

1 int row, column;
2 double temperature;
3 row = 1;
4 column = 2;
5 temperature = 3.0;

The statements in lines 1 and 2 of the code above allocate memory for two in-
teger variables row and column, and one double precision floating point variable
temperature. It is important to understand that, whilst memory is allocated for
these variables, we do not know until we assign values to these variables in lines 3–5
what values are stored by these variables. A common mistake is to assume that these
variables are initialised to zero when the memory is allocated: this is true some of
the time, but you should not rely on this.

Note the use of the decimal point for the double precision floating point variable
temperature in line 5 of the listing above. This is not strictly necessary, but em-
phasises that this variable is a floating point variable. Use of this decimal point has
the advantage that, provided we compile the code with suitable flags, compilation
will trigger a warning if we had mistakenly declared this variable to be an integer.

We strongly encourage the use of variable names that have some relation to the
variable that they represent, for example row as a variable that contains the index
to the row of a matrix (see Sect. 6.6 for a longer discussion of naming conventions
for variables). There are certain rules that variable names in C++ must adhere to,
but these rules are not particularly restrictive. The first rule is that all variables in
C++ programs should begin with a letter. All other characters in variable names
must be letters, numbers or underscores. Variable names are case–sensitive, and so
“ROW” is a different variable to “row”. We would not, however, recommend writing

1.4 Variables 11

a program with one variable called “ROW” and another variable called “row” as
the potential for confusing these variables is obvious. One final restriction is that
some names, such as int, for, return may not be used as variable names
because they are used by the language. These words are known as reserved words
or keywords.

A variable may be initialised when defining the variable type. For example, the
code fragment in Listing 1.2 may be written as the following code fragment.

�

1 int row = 1, column = 2;
2 double temperature = 3.0;

The value of more than one variable may be assigned in each statement, as shown
below.

�

1 int row = 1, column = 2;
2 row = column = 3;

However, line 2 in the code fragment above may cause confusion—it actually
means

�

1 int row = 1, column = 2;
2 row = (column = 3);

and so both row and column take the value 3 after this fragment of code has been
executed. However, it may be mistakenly read to be

�

1 int row = 1, column = 2;
2 (row = column) = 3;

after which row would take the value 2 (which was the initial value of column), and
column would take the value 3. There is clearly potential for introducing errors
when assigning more than one value in each statement, and so we do not recommend
this approach.

It is often the case that a programmer intends a variable to be constant through-
out the code, for example the numerical value used for the density of a fluid. The
programmer can ensure that a variable is guaranteed to be unchanged throughout
the code by assigning a value to the variable when it is declared, together with use
of the keyword const as shown in the fragment of code below.

�

const double density = 45.621;

We may want to set the tolerance of some iterative solver to a very small num-
ber, for example 10−12. Clearly, we may set this tolerance using the code fragment
below.

12 1 Getting Started

�

double tolerance = 0.000000000001;

The listing above is clearly not ideal—a casual glance at the code does not allow us
to distinguish easily between, say, 10−10 and 10−12. It would be much clearer if we
could write the numerical value in scientific notation. This is demonstrated in the
code below.

�

double tolerance = 1.0e-12;

The letter “e” in the line of code above may be read as “times 10 to the power
of”: that is, 589.63 may be written 5.8963e2 as 589.63 = 5.8963 × 102.

1.4.2 Other Numerical Variables

In the previous section, we restricted ourselves to declaring all integer variables
using the keyword int and all floating point variables using the keyword double.
There are—however—variants on these variable types which we now discuss.

Integers can be declared as integers, short integers or long integers as shown
below.

�

1 int integer1;
2 short int integer2;
3 long int integer3;

The actual range of integers that may be stored by each of these variables depends
on the system that you are using. For example, on a 32-bit operating system the
long int is completely synonymous with the int data type—but on modern
64-bit architectures the long int is assigned twice as much space as the int (so
it can store numbers in the range ±9 × 1018 as opposed to ±2 × 109).

Variables of type short int require the allocation of less memory, with a
corresponding reduction in the range of values that may be stored in this memory.
It may be tempting to try to use short integers where possible to free up as much
memory as possible. We do not recommend this: in software written for scientific
computing applications the bulk of memory allocated is usually used to store float-
ing point variables. Reducing the memory allocated to integer variables is unlikely
to free a significant volume of memory.

A further classification of each of the integer types is as signed or unsigned inte-
gers. Signed integers may be used to store both positive and negative integers, whilst
unsigned integers may be used to store only nonnegative integers. These variables
may be used as shown below.

�

1 signed long int integer4; // signed is unnecessary
2 unsigned int integer5;

1.4 Variables 13

The default for any integer is a signed integer, hence there is no purpose in explic-
itly declaring an integer as a signed integer. A variable of type unsigned int is
allocated an identically sized memory location as a variable of type int. As would
be expected, a variable of type unsigned int can then store a range of non-
negative integers roughly twice as big as a variable of type int. A programmer
is, however, unlikely to notice the difference between these two variable types on
modern systems.

Floating point variables may be declared using the keywords float, double
or long double as shown below.

�

1 float floating_point_number1;
2 double floating_point_number2;
3 long double floating_point_number3;

As with integers, the range of numbers that may be stored using each of these
variable types depends on the system used. On modern systems it is very rare that
the range of numbers that may be stored by a variable of type double differs
from the range that may be stored by a variable of type long double. In the
remainder of this book, we do not distinguish between these data types. Variables of
type float typically store a smaller range of numbers than those of type double.
Although variables of type double require more memory we strongly urge writers
of scientific computing applications to use double precision floating point variables:
this will minimise the effect of rounding errors, thus removing one potential source
of error from any program written.

1.4.3 Mathematical Operations on Numerical Variables

Sample C++ code for performing a variety of mathematical operations on variables
is given below. Note the inclusion of the header file cmath. This file is needed for
some mathematical operations and also includes values of some useful constants,
such as M_PI, that contains the value of π correct to about 20 decimal places.

�

1 #include <cmath>
2

3 int main(int argc, char* argv[])
4 {
5 double x = 1.0, y = 2.0, z;
6 z = x/y; // division
7 z = sqrt(x); // square root
8 z = exp(y); // exponential function
9 z = pow(x, y); // x to the power of y

10 z = M_PI; // z stores the value of pi
11

12 return 0;
13 }

14 1 Getting Started

Table 1.1 Shorthand for
some mathematical
operations

Longhand Shorthand

a = a + b; a += b;

a = a - b; a -= b;

a = a * b; a *= b;

a = a / b; a /= b;

a = a % b; a %= b; if a and b are integers (a mod b)

a = a + 1; a++; if a is an integer

a = a - 1; a--; if a is an integer

Many other mathematical functions are available. The functions cos, sin, tan,
acos, asin, atan, cosh, sinh, tanh, log, log10, ceil, floor can be
used in exactly the same way as sqrt and exp in the code above: that is, they
accept one argument, and return one value.

Some mathematical functions deserve more explanation. This is done through
their implementation in code below.

�

1 #include <cmath>
2

3 int main(int argc, char* argv[])
4 {
5 double x = 7.8, y = 1.65, u = -3.4, z;
6 z = fmod(x, y); // remainder when x is divided by y
7 // z is 1.2 since 7.8 = 4*1.65 + 1.2
8 z = atan2(y, x); // tangent of angle between the vector
9 // (x, y) and the positive x-axis

10 // note the ordering of y and x in
11 // calling the function atan2
12 // z is 0.208465
13 z = fabs(u); // Absolute value of u
14 // z is 3.4
15 // note fabs should not be confused
16 // with abs (the integer equivalent)
17

18 return 0;
19 }

There are many instances in scientific computing code where we wish to in-
crement a variable a by the value b, that is, we want to replace the value that the
variable a stores by the value a+b. There are shorthand operations for this and other
similar operations in C++, shown in Table 1.1.4 Note that the a % b operation, pro-
nounced “a mod b”, is a modulus operation and may be thought of as the remainder
after dividing a by b using integer division as described in Sect. 1.4.4.

4The “++” shorthand programming construct, which is also available in the C language, explains
the original naming of the language “C++”. It is a pun which means “like C but one better”.

1.4 Variables 15

1.4.4 Division of Integers

One common error frequently made by inexperienced C++ programmers is in di-
viding an integer by another integer. Consider the fragment of code below.

�

1 int i = 5, j = 2, k;
2 k = i / j;
3 std::cout << k << "\n";

This code fragment will output the value 2, when the value of dividing 5 by 2—
that is, 2.5—was actually intended. There are two potential problems with the code
fragment as it is written above. The first operation that will be performed when
executing line 2 of the listing above is to divide the integer i by the integer j.
The value resulting from this operation will then be stored in the memory allocated
to k. In C++, division of an integer by another integer will return only the integer
part of this division: hence dividing i by j will store the integer part of 2.5, which
is 2 (as everything after the decimal point will be ignored). The second part of
this statement—the assignment operator—will then assign the value 2 to the integer
variable k.

It may be thought that modifying the code fragment above so that k is defined to
be a double precision floating point variable may solve the problem, as shown in the
code fragment below.

�

1 int i = 5, j = 2;
2 double k;
3 k = i / j;
4 std::cout << k << "\n";

This still does not give the correct value of 2.5. This is because the division is
performed in line 3 before the result is stored as the double precision floating point
variable k. As division of an integer by another integer in C++ returns the integer
part of the division, the division of i by j returns the value 2 as explained above.
This value is then stored as the double precision floating point number 2.0 in the
memory allocated to k.

To divide two integers as if they were floating point variables, we may convert the
integers to double precision floating point variables as shown in the code fragment
below.

�

1 int i = 5, j = 2;
2 double k;
3 k = ((double)(i)) / ((double)(j));
4 std::cout << k << "\n";

The code ((double)(i)) is known as “explicit type conversion” and allows us
to treat the integer variable i as a double precision floating point variable, and so
this code fragment does output the correct value of 2.5.

16 1 Getting Started

1.4.5 Arrays

Many scientific computing applications are underpinned by algorithms that are
based on vectors and matrices. These may be stored in C++ as an entity known
as an array. If the size of the array is known in advance then it can be declared as
follows.

�

1 int array1[2];
2 double array2[2][3];

In the code fragment above, array1 represents a vector of integers of length 2,
whilst array2 represents a matrix of double precision floating point variables of
size 2 × 3.

In contrast to MATLAB and Fortran, in C++ the indices of an array of length n
start with entry 0 and end with entry n-1. This is known as “zero-based indexing”.
Elements of an array are accessed by placing the indices in separate square brack-
ets, and so we may completely populate the arrays array1 and array2 declared
above using the following code.

�

1 array1[0] = 1; // Note that indexing begins from 0
2 array1[1] = 10;
3 array2[0][0] = 6.4;
4 array2[0][1] = -3.1;
5 array2[0][2] = 55.0;
6 array2[1][0] = 63.0;
7 array2[1][1] = -100.9;
8 array2[1][2] = 50.8;

We may also perform operations on entries of the array as shown below.

�

1 array1[0]++; // increments the value of this entry by 1
2 array2[1][2] = array2[0][1] + array2[1][0];

Arrays can be initialised when they are declared, for example,

�

1 double array3[3] = {5.0, 1.0, 2.0};
2 int array4[2][3] = { {1, 6, -4}, {2, 2, 2} };

where the array array3 represents the vector

⎛
⎝

5
1
2

⎞
⎠ ,

1.4 Variables 17

and array4 represents the matrix

(
1 6 −4
2 2 2

)
.

Note that the curly bracket notation may only be used to populate arrays at the
same time as when they are declared—for example the code

�

int array5[3] = {0, 1, 2};

is acceptable, but the code
�

1 int array6[3];
2 array6 = {0, 1, 2};

will not be accepted by the compiler.

1.4.6 ASCII Characters

ASCII characters are numbers, uppercase letters, lowercase letters and some other
commonly used symbols: most of the characters on your keyboard are ASCII char-
acters. Variables that are ASCII characters are declared using the keyword char.
Example code using an ASCII character is shown below.

�

1 #include <iostream>
2

3 int main(int argc, char* argv[])
4 {
5 char letter;
6 letter = ’a’; // note the single quotation marks
7

8 std::cout << "The character is " << letter << "\n";
9

10 return 0;
11 }

1.4.7 Boolean Variables

Boolean variables take either the value true or the value false. These vari-
ables are commonly used when specifying whether a portion of code should be
executed in conjunction with if and while statements (which will be introduced
in Chap. 2). Examples of Boolean variables are given below.

18 1 Getting Started

�

1 bool flag1, flag2;
2 flag1 = true;
3 flag2 = false;

1.4.8 Strings

The data type char represents one ASCII character. A string may be thought of as
an ordered collection of characters. For example, “C++” is a string consisting of the
ordered list of characters “C”, “+”, and “+”.

To use strings in C++ requires the header file string. The library which may
be accessed using this header file contains significant functionality for the use and
manipulation of strings. The bulk of coding for scientific computing applications
requires operations on numerical variables, and so we do not discuss this data type
in much detail. In the example code below, we demonstrate how to declare a string,
how to determine the length of a string, how to access individual characters of the
string, and how to print a string to the console.

A string in C++ is a little like an array of characters together with a layer of extra
functionality. There is no need to understand why the length and elements of the
string may be accessed in this way: an understanding of how is sufficient.

�

1 #include <iostream>
2 #include <string>
3

4 int main(int argc, char* argv[])
5 {
6 std::string city; // note the std::
7 city = "Oxford"; // note the double quotation marks
8 std::cout << "String length = " << city.length() << "\n";
9 std::cout << "Third character = " << city.at(2) << "\n";

10 std::cout << "Third character = " << city[2] << "\n";
11 std::cout << city << "\n"; // Prints the string in city
12 std::cout << city.c_str() << "\n"; // Also prints city
13 }

In line 9 and line 10 of the code recall that arrays in C++ have indices that begin
from zero: city.at(2) and city[2] both refer to the entry of the array of char-
acters with index 2, that is, “f”, the third letter of the string “Oxford”. Lines 11 and
12 both have the effect of printing the contents of city (“Oxford”) to the screen.
Line 12 prints the contents of city to the screen, but does so by first converting
from a C++ string to a C string, which is an array of type char. The string utility
function c_str is not needed here, but is useful in cases where we need to pass a
C++ string to a function which expects an array of type char.

1.5 Simple Input and Output 19

1.5 Simple Input and Output

It would be pointless to write a code without having the means to communicate the
output of the code to the user, or to some other application. As such, output is a
programming technique that must be mastered by all programmers. Similarly, the
user of software would expect to be provided with the ability to specify data that
the software would use to generate output: input is therefore just as important a
programming skill. We now describe basic C++ commands to allow output to the
screen and input from the keyboard. In Chap. 3, we provide a fuller explanation,
describing input from, and output to, a file, and a more flexible specification of the
format of this output.

1.5.1 Basic Console Output

We have already briefly discussed console—or screen—output in Sect. 1.2, and have
seen that the statement

�

std::cout << "Hello World\n";

prints the text “Hello World” to the screen, followed by a new line.
We may use std::cout to write more than one entity to the console at a time.

This is best explained by example: consider the statements below.
�

1 int x = 1, y = 2;
2 std::cout << "x = " << x << " and y = " << y << "\n";

The second statement above tells the computer to first print the string “x = ”,
followed by the value assigned to the variable x, then the string “ and y = ”,
then the value assigned to the variable y, and finally to finish with a new line. The
output is therefore

�

x = 1 and y = 2

Note that any spaces required in the output must be included within quotation
marks in the statement that begins std::cout.

We have already seen one formatting command for output in C++: the new line
formatting command \n. Some other useful formatting commands are shown in
Table 1.2.

Output from C++ is buffered. Sometimes, for example, if the computer is busy
doing a large volume of computation, the program may not print the output to
the screen immediately. If immediate output is desirable, then use the statement
“std::cout.flush();” after any std::cout command to ensure the output
is printed before any other statements are executed, as shown in the listing below.

20 1 Getting Started

Table 1.2 Some formatting
commands for console output

Command Symbol

new line \n
tab \t
’ \’
” \"
? \?
bell sound \a

As with certain aspects of string manipulation discussed in Sect. 1.4.8, at this stage
it is sufficient to understand how to send output to the console immediately without
worrying why it is done in this way.

�

1 std::cout << "Hello World\n";
2 std::cout.flush();

1.5.2 Keyboard Input

Keyboard input for numerical variables and characters is achieved using the input
stream std::cin, where cin is a contraction of console in. As with console out-
put, the iostream header file must be included. The following statements prompts
someone to enter their Personal Identification Number—commonly known as their
PIN—and then assigns the number entered to the integer variable pin.

�

1 int pin;
2 std::cout << "Enter your PIN, then hit RETURN\n";
3 std::cin >> pin;

std::cin may be used to ask for more than one input at a time, as shown
below.

�

1 int account_number, pin;
2 std::cout << "Enter your account number\n";
3 std::cout << "and then your PIN followed by RETURN\n";
4 std::cin >> account_number >> pin;

Keyboard input for variables of type string is slightly different. An example of
how to input a string is given below. As with the commands for basic manipulation
of strings given in Sect. 1.4.8, we do not attempt to explain why strings are input in
this way: this will become clear when more advanced features of C++ are explained
later in this book.

1.6 The assert Statement 21

�

1 #include <iostream>
2 #include <string>
3

4 int main(int argc, char* argv[])
5 {
6 std::string name;
7 std::cout << "Enter your name and then hit RETURN\n";
8 std::getline(std::cin, name);
9 std::cout << "Your name is " << name << "\n";

10

11 return 0;
12 }

1.6 The assert Statement

Scientific computing applications usually require a massive number of complicated
mathematical computations. If any one of these computations is incorrect, then the
final results of the computation will usually be incorrect. Finding the source of the
error is an excruciatingly tedious process, and so we strongly recommend the use of
the features of the C++ language that allow identification of unexpected occurrences
such as an attempt to compute the square root of a negative number.

In Chap. 9, we point to the notion that there are various levels or degrees of error.
In particular, we introduce exceptions, which are a feature of the C++ language that
allow very effective handling of an unexpected occurrence when a code is being run.
A less sophisticated approach is to use assert statements, as demonstrated in the
code below. Note the inclusion of the extra header file cassert that is required to
use assert statements.

�

1 #include <iostream>
2 #include <cassert>
3 #include <cmath>
4

5 int main(int argc, char* argv[])
6 {
7 double a;
8 std::cout << "Enter a non-negative number\n";
9 std::cin >> a;

10 assert(a >= 0.0);
11 std::cout << "The square root of "<< a;
12 std::cout << " is " << sqrt(a) << "\n";
13 return 0;
14 }

The code above invites the user to enter a nonnegative number, and returns the
square root of this number. Before the square root is calculated, we check that
the number really is nonnegative through the assert statement. We will see in

22 1 Getting Started

Chap. 2 that the “>=” that appears in line 10 of the code is the “greater than or
equal to” operator: this line of code therefore checks that the variable a is non-
negative. To see the effect of the assert statement, we first save the code as
program.cpp and then compile the code without any optimisation flags to pro-
duce executable a.out. If, when this executable is run, the number −5 is entered,
the code terminates at the assert statement with the following error message.
�

a.out:: program.cpp:10: int main(int, char**): Assertion ‘a >= 0.0’ failed

Although we emphasise that this is a very rudimentary technique for identify-
ing errors, and that we will introduce more sophisticated techniques later, assert
statements can provide significant information: in the error message above we see
that the exact line of code where the problem occurred has been identified. Another
advantage of assert statements is that they are automatically removed when com-
piled with the “-O” optimisation flag, so that you can test code with the assertions
activated but distribute a faster program that has them deactivated.

1.7 Tips: Debugging Code

There are many tools designed to aid with the debugging of code. The most basic
of these is the compiler, and the flags associated with the compiler, as described in
Sects. 1.3.2 and 1.3.3. More sophisticated tools exist, but they are aimed at larger
scale projects, such as those that we will develop in later chapters of this book.

Rather than learning to use a sophisticated debugging tool whilst in the early
stages of learning C++, we suggest below some simpler techniques for debugging
the code that you will be writing when tackling the exercises in the early chapters
of this book.
Compile your code frequently. Saving your code and compiling it using the warning

compiler flag described in Sect. 1.3.3 every time a few statements are added is a
useful diagnostic to see if any potential problems are being introduced. If there
are any problems, comment out the new statements and recompile. Then add the
statements in one at a time until the problem line is identified. When you first write
code in C++ you may be amazed how often you forget the basic syntax such as a
semi-colon at the end of a statement.

Save your project frequently. If you have code that works and you need to add new
functionality, then do not throw away the old version. If things go wrong then you
will be able to see exactly what you changed and if all else fails you will have
a working version to roll back to. If it is critical that you are able to roll back
to a working version of the code, or if you are in a collaborative project then we
recommend that you use a version control system.5

5There are many open source version control systems such as CVS, Subversion, Mercurial or Git
to help you with this. There are also organisations who will host your code repository for you.

1.8 Exercises 23

Always test the code with a simple example. For example, if you are writing code to
add the elements of two arrays verify the output by comparison with a calculation
that you have carried out yourself.

Understand errors that arise when executing the code. If your program complains
of a “segmentation error” when executing, it is likely that you have attempted to
access a member of an array that is out-of-range: that is, you may have attempted
to access the 6th entry of an array that was only declared to have 4 elements.

Use output. If you need to know where you program is crashing, and why, then
print out some values of variables at key points in the execution. Do not forget to
flush the output so that it appears before the program crashes!

Use assertions. If you expect a certain property at the start of a section of code, for
example, that the scale factor is nonzero or that the argument of a square-root is
nonnegative, you can check for it using assertions (introduced in Sect. 1.6).

C++ arrays are indexed beginning from zero. If the array temperature is de-
clared as having 4 elements, the statement “temperature[4] += 1.0;” will
cause problems.

Use a debugger. If all else fails then debug your program using a debugger. Tips on
using a debugger are to be found in Sect. 7.7.

1.8 Exercises

1.1 To ensure that your compiler is correctly set up, copy and save the file Hello-
World.cpp displayed in Listing 1.1, compile it, and execute it.

1.2 Write code that asks a user to enter two integers from the keyboard and then
writes the product of these integers to the screen.

1.3 Write code that declares two vectors as arrays of double precision floating point
numbers of length 3 and assigns values to each of the entries. Extend this code so
that it calculates the scalar (dot) product of these vectors and prints it to screen.
Finally, extend the code so that it prints the Euclidean norm of both vectors to screen.
[See Sect. A.1.2 for a definition of the scalar product, and Sect. A.1.5 for a definition
of the Euclidean norm of a vector.]

1.4 Write code that declares four 2 × 2 matrices of double precision floating point
numbers, A, B, C, D, and assigns values to the entries of A and B. Let C= A+B, and
D=AB. Extend your code so that it calculates the entries of C and D, and then prints
the entries of these matrices to screen.

1.5 Write code that invites the user to input separately strings that store their given
name and their family name. Print the user’s full name to screen.

1.6 I want to record the number of cars that drive past my house each day for five
consecutive days, and calculate the average of these numbers. Create an integer
array to store these five numbers, and then write code to calculate the average of

24 1 Getting Started

these numbers. Execute your code using the sample data 34, 58, 57, 32, 43. Verify
that you get the correct answer of 44.8.
[Hint: read the material in Sect. 1.4.4 on converting integers to double precision
floating point numbers.]

1.7 Investigate the use of the compiler error warning flags discussed in Sect. 1.3.3.
For example: (i) declare an integer as a constant variable and then attempt to change
this value later in the code; and (ii) attempt to set an integer variable to the value 3.2.

2Flow of Control

In almost any computer program written for a scientific computing application, we
need to allow the computer to execute a collection of statements if—and only if—
some criterion is met. For example, if we were writing a program to control the
motion of a spacecraft travelling to Mars, the program would include lines of code
that would control the safe landing of the spacecraft. As the craft completes its
touchdown, it fires retrorocket motors to control descent until the sensors detect that
the landing gear is in contact with the planet’s surface. It is imperative that the lines
of code which say “cut the motor if and only if there is a strong signal from the
landing gear” are executed at exactly the right time. If these instructions are not
executed when the spacecraft has landed, the retrorockets may fire for too long and
cause damage to the craft. On the other hand, if the instruction to cut the motors is
executed when the spacecraft is still descending, we would expect the spacecraft to
crash.1 It is clear that the relevant lines of code should be executed if, and only if,
certain conditions are met.

As with most programming languages, conditional branching may be achieved
in C++ programs by using an if statement. Similarly, we may use a while state-
ment to execute a collection of statements until a specified condition is met, and a
for loop to execute a collection of statements a specified number of times. In this
chapter, we explain how to utilise these features of the C++ language.

2.1 The if Statement

The most basic use of an if statement is to execute one or more statements if, and
only if, a given condition is met. As we shall see in this section, we may build upon
this simple construct to write more complicated statements when required.

1Nobody knows what happened to the Mars Polar Lander in the last few seconds of its descent
in 1999, but experts believe there was a bug in the landing gear sensor code. This bug involved
accumulating weak signals from the landing gear and may have caused the retrorockets to cut out
too early.

J. Pitt-Francis, J. Whiteley, Guide to Scientific Computing in C++,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-4471-2736-9_2, © Springer-Verlag London Limited 2012

25

http://dx.doi.org/10.1007/978-1-4471-2736-9_2

26 2 Flow of Control

2.1.1 A Single if Statement

Let us suppose that we wish to execute two statements, Statement1 and State-
ment2, if—and only if—the condition p > q is met. The following code demon-
strates the basic syntax for this in C++.

�

1 if (p > q)
2 {
3 Statement1;
4 Statement2;
5 }

If the condition p > q is met, then the code enclosed by the curly brackets
is executed. The condition (in round brackets) is technically know as the guard.
Note the indentation within the curly brackets in the above listing. While this is
not necessary for the compiler to understand the meaning, it makes it clearer to the
reader which statements are executed if the condition p > q is met.

If only one statement—Statement1—is to be executed when the condition
p > q is satisfied, then curly brackets are not strictly necessary. For example, the
following two code fragments will execute Statement1 if the condition p > q
is met.

�

1 if (p > q)
2 Statement1;

or

�

if (p > q) Statement1;

Although either of these two variants of the code will do what we want it to, we
do not recommend them, as the curly brackets make it very clear precisely which
statements are executed as a consequence of a given if statement. As such, we
would strongly suggest the use of curly brackets, as shown in the code below. More
suggestions on tips for ensuring code is clearly readable—known as coding conven-
tions—may be found in Sect. 6.6.

�

1 if (p > q)
2 {
3 Statement1;
4 }

2.1 The if Statement 27

2.1.2 Example: Code for a Single if Statement

Below is a concrete example of code that uses an if statement. This code changes
the value of x to zero if, and only if, x is negative. If x is not negative, line 5 of the
code will not be executed, and the value of x will be unchanged.

�

1 double x = -2.0;
2

3 if (x < 0.0)
4 {
5 x = 0.0;
6 }

2.1.3 if–else Statements

It is often the case that we want to set a variable to one value if a specified condition
is met, and to a different value otherwise. This may be implemented in C++ code by
the use of an if statement in conjunction with an else statement. The fragment of
code below sets the double precision floating point variable y to the value 2 if the
integer variable i is positive, and to the value 10 otherwise.

�

1 int i;
2 //...
3 double y;
4 if (i > 0)
5 {
6 y = 2.0;
7 }
8 else
9 {

10 //When i <= 0
11 y = 10.0;
12 }

Note the comment in line 10 of the listing above. As no condition is needed for
the else condition, it is always good programming practice to use a comment to
explicitly state under what conditions the else condition should be met.

2.1.4 Multiple if Statements

We may extend the if and else statements described above to allow more com-
plicated conditions on the execution of statements. Extending the previous example,
suppose the double precision floating point variable y takes the value 2 if the integer
variable i is greater than 100, y takes the value 10 if i is negative, and y takes the
value 5 otherwise. C++ code for this condition is given below.

28 2 Flow of Control

�

1 int i;
2 //...
3 double y;
4 if (i > 100)
5 {
6 y = 2.0;
7 }
8 else if (i < 0)
9 {

10 y = 10.0;
11 }
12 else
13 {
14 //When 0 <= i <= 100
15 y = 5.0;
16 }

2.1.5 Nested if Statements

It is common in scientific computing to have an algorithm where statements must be
executed if, and only if, two separate conditions are met. One way of implementing
this is to use nested if statements, as shown below. In this code the double precision
floating point variable y is assigned the value 10 if, and only if, the conditions
x > z and p > q are both met.

Listing 2.1 A nested if statement
�

1 double x, z, p, q;
2 double y;
3 if (x > z)
4 {
5 if (p > q)
6 {
7 //Both conditions have been met
8 y = 10.0;
9 }

10 }

2.1.6 Boolean Variables

Boolean variables may be used as the condition with an if statement. This is
demonstrated in the fragment of code below.

2.2 Logical and Relational Operators 29

Table 2.1 Logical operators
in C++

Logical condition Operator

AND &&

OR ||
NOT !

�

1 bool flag = true;
2 if (flag)
3 {
4 std::cout << "This will be printed\n";
5 }
6 else
7 {
8 // flag is false
9 std::cout << "This won’t be printed\n";

10 }

2.2 Logical and Relational Operators

In Sect. 2.1, we demonstrated the use of if statements by using the relational oper-
ator “greater than”. To fully utilise if statements and, as we shall see later, while
statements and for loops, we need to extend our range of logical and relational
operators. These are summarised in Tables 2.1 and 2.2. The combination of logical
and relational operators allow any reasonable condition to be implemented in C++
code.

A first example of the combination of logical and relational operators is to replace
the nested if statements in Listing 2.1 by a single if statement. The condition in
the new if statement is true if, and only if, both the condition x > z and the con-
dition p > q are true. If this compound condition is met, the value 10 is assigned
to the variable y. This is demonstrated in the code below.

�

1 double x, z, p, q;
2 double y;
3 if ((x > z) && (p > q))
4 {
5 //Both conditions have been met
6 y = 10.0;
7 }

The example code fragment below uses a combination of logical and relational
operators to set a double precision floating point variable y to the value 10 if either
p > q or the integer variable i is not equal to 1. If neither of these conditions has
been met, then the variable y is assigned the value −10.

30 2 Flow of Control

Table 2.2 Relational
operators in C++

Relation Operator

Equal to == (note that it is not “=”)

Not equal to !=

Greater than >

Less than <

Greater than or equal to >=

Less than or equal to <=

�

1 double p, q;
2 int i;
3 double y;
4 if ((p > q) || (i != 1))
5 {
6 //One or both conditions have been met
7 y = 10.0;
8 }
9 else

10 {
11 //Neither condition has been met: p<=q and i==1
12 y = -10.0;
13 }

The logical operator “NOT” is often used in conjunction with Boolean variables.
This is demonstrated in the example code below, where the integer variable i is
incremented by the value 2 if, and only if, the Boolean variable flag takes the
value false.

�

1 int i;
2 bool flag = false;
3 if (!flag)
4 {
5 // !flag is true when flag is false
6 i += 2;
7 }

2.3 The while Statement

A while statement is used if a collection of statements are to be executed until
some prescribed condition is met. The C++ syntax for while statements is similar
to that for if statements.

2.3 The while Statement 31

A first example of a while statement is given below. A variable x is initially
assigned the value 10. On each execution of the code inside the while statement
the value of the variable x is halved. This is repeated while the value of the variable
x is greater than 1.

Listing 2.2 A while loop
�

1 double x = 10.0;
2 while (x > 1.0)
3 {
4 // This loop will execute while x > 1, so if the
5 // value of x does not decrease then it will not
6 // terminate.
7 x *= 0.5;
8 }
9 // Here we know the guard (x > 1.0) has broken.

10 // This means that after the loop, x <= 1.0

Although while statements are frequently used in C++ programming, they
should be used with care. Consider the fragment of code below. Suppose we want
to develop Listing 2.2 above so that we count the number of times that we halve the
variable x. This may be achieved by the use of an integer variable count which
is incremented every time the statements inside the curly brackets are executed, as
shown below.

�

1 double x = 10.0;
2 int count = 0;
3 while (x > 1.0)
4 {
5 x *= 0.5;
6 std::cout << "x = " << x << ", count = "
7 << count << "\n";
8 count++;
9 std::cout << "x = " << x << ", count = "

10 << count << "\n";
11 std::cout << "Reached bottom of while loop\n";
12 }
13 std::cout << "count = " << count << "\n";

The output of this code is shown below.

�

x = 5, count = 0
x = 5, count = 1
Reached bottom of while loop
x = 2.5, count = 1
x = 2.5, count = 2
Reached bottom of while loop
x = 1.25, count = 2
x = 1.25, count = 3

32 2 Flow of Control

Reached bottom of while loop
x = 0.625, count = 3
x = 0.625, count = 4
Reached bottom of while loop
count = 4

The important thing to note in the example output above is that the condition
x > 1.0 is tested only at the beginning of the statements enclosed within the curly
brackets. In particular, this condition first became untrue when the variable x was
assigned the value 0.625 at line 5 in the code. However, the condition x > 1.0
was not tested at this point, and so the variable count was incremented as line 8
will be executed before leaving the while loop.

Were we to want a loop to be executed at least once, regardless of any other
conditions, then when can use the do-while syntax which tests at the end of the
loop, as shown below.

�

1 double x = 0.8;
2 int count = 0;
3 do
4 {
5 x *= 0.5;
6 std::cout << "x = " << x << ", count = "
7 << count << "\n";
8 count++;
9 std::cout << "x = " << x << ", count = "

10 << count << "\n";
11 std::cout << "Reached bottom of do-while loop\n";
12 } while (x > 1.0);
13 std::cout << "count = " << count << "\n";

The output of this code (shown below) demonstrates that the body of the loop is
executed once, even though the initial value of x does not satisfy the condition in
the guard.

�

x = 0.4, count = 0
x = 0.4, count = 1
Reached bottom of do-while loop
count = 1

We may nest while statements in exactly the same way as if statements, de-
scribed in Sect. 2.1.5.

2.4 Loops Using the for Statement

The simplest application of a for loop is to execute a collection of statements a
specified number of times. The fragment of code below demonstrates how to execute
a given statement 10 times.

2.4 Loops Using the for Statement 33

�

1 for (int i=0; i<10; i++)
2 {
3 std::cout << i << " ";
4 }

Line 1 of the code above deserves more explanation. The first statement in this
line of code declares an integer variable i, and initialises this variable to the value 0.
The code inside the curly brackets is executed if, and only if, the variable i is less
than 10. The final content of this line of code increments i by the value 1 each time
all the statements enclosed by the curly brackets have been executed. The output of
this code is therefore

�

0 1 2 3 4 5 6 7 8 9

We may also nest for loops in a similar way to that for if statements described
in Sect. 2.1.5. Furthermore, for loops may be defined to be executed a variable
number of times, as demonstrated in the example code below.

�

1 for (int i=0; i<5; i++)
2 {
3 for (int j=5; j>i; j--)
4 {
5 std::cout << "i = " << i
6 << " j = " << j << "\n";
7 }
8 }

Before explaining what the code above does, it is important to understand what
line 3 of code (the second for statement) does. In a similar vein to the discussion
of the initial example of a for loop, we see that the first statement initialises the
integer variable j to 5. The statements within the furthest indented curly brackets
are executed when the variable j is greater than the variable i. Each time these
statements have been executed, j is decremented by the value 1.

We are now in a position to understand the whole of the code above. The loop
over the variable i is known as the outer loop, and the loop over the variable j is
known as the inner loop. The first time the statements in the outer loop are executed,
i takes the value 0. When i takes this value, the third line of code tells us that j
takes the values 5, 4, 3, 2, 1. The second time the statements in the outer loop are
executed, i will take the value 1, and so j will take the values 5, 4, 3, 2. We may
now deduce that the output of the code above will be

�

i = 0 j = 5
i = 0 j = 4
i = 0 j = 3
i = 0 j = 2

34 2 Flow of Control

i = 0 j = 1
i = 1 j = 5
i = 1 j = 4
i = 1 j = 3
i = 1 j = 2
i = 2 j = 5
i = 2 j = 4
i = 2 j = 3
i = 3 j = 5
i = 3 j = 4
i = 4 j = 5

2.4.1 Example: Calculating the Scalar Product of Two Vectors

The scalar product between two vectors of the same length may be computed using
a for loop. Suppose the vectors are both of length n, and are stored in double preci-
sion floating point arrays vector1 and vector2 of the correct size. Remember-
ing that the indexing of C++ arrays begins from zero, the scalar product (discussed
in more detail in Sect. A.1.2) between these vectors—defined to be a double pre-
cision floating point variable scalar_product—is given mathematically by the
following sum:

scalar_product=
n−1∑
i=0

vector1[i]× vector2[i].

The mathematical expression above for calculating the scalar product is imple-
mented in C++ below for the case n=2. Note that the variable scalar_product
must be initialised to 0 before any calculation is carried out.

�

1 double vector1[2], vector2[2];
2 vector1[0] = 0.5; vector1[1] = -2.3;
3 vector2[0] = 34.2; vector2[1] = 0.015;
4 double scalar_product = 0.0;
5 for (int i=0; i<2; i++)
6 {
7 scalar_product += vector1[i] * vector2[i];
8 }

2.5 The switch Statement

A good understanding of the flow of control resulting from if, while and for
statements is crucial for implementation of scientific computing applications. One
further statement that is used less frequently is the switch statement. This state-
ment is best explained by example. Consider the code below, where the variable i

2.6 Tips: Loops and Branches 35

has been declared as an integer. Note that the language specification says that the
control variable, which is i in our case, must be an integer and not a floating point
type.

�

1 int i;
2 switch(i)
3 {
4 case 1:
5 std::cout << "i = 1\n";
6 case 20:
7 std::cout << "i = 1 or i = 20\n";
8 break;
9 default:

10 std::cout << "i is not 1 or 20\n";
11 }

If i takes the value 1 when the code above is executed, the statements below
line 4 will be executed until the line of code break is reached (line 8). At the
point when break is reached, the flow of execution will leave the code inside the
curly brackets. Similarly, if the code is executed when i takes the value 20, then the
statements below line 6 will be executed until the line of code break is reached.
For all other values of i the line of code after default (line 9) will be executed.

Switch statements were introduced to programming languages because they are
very easy for compilers to implement efficiently. However, they are notorious as
places where programmers introduce bugs by forgetting to end case statements
with the break keyword or by forgetting to give a default case. Switch state-
ments should be written with care.

2.6 Tips: Loops and Branches

In this tips section, we highlight several traps that programmers who are new to C++
may fall into.

2.6.1 Tip 1: A Common Novice Coding Error

Below is code that has been written with the intention of doubling a variable x five
times.

�

1 double x = 2.0;
2 for (int i=0; i<5; i++);
3 {
4 x *= 2.0;
5 }
6 std::cout << "x = " << x << "\n";

36 2 Flow of Control

It would be expected that this code would output the value 2×25 = 64. However,
the actual output of this code is

�

x = 4

Why is this? Hint: look very closely at line 2 of the code above.
The reason for the surprising output is the semi-colon at the end of line 2. This

is a common error for programmers who are new to the language. After seeing that
most lines end with a semi-colon you might begin to get into the habit of ending
every line with one. When you see the guard at the beginning of a for, while or
if statement without a semi-colon at the end then it might be tempting to stick one
in!

You might ask “If the loop is not executing as intended, why is the final answer
x = 4 and not x = 2?”. The answer is that the empty space in line 2 between the
“)” and the “;” is being interpreted as the body of the loop—it is the empty nothing
which is executed 5 times. The intended body of the loop (lines 3–5) is treated as
a block with special scope (see Sect. 5.1 for more information). This block has no
connection with the for loop and is executed once.

2.6.2 Tip 2: Counting from Zero

Programmers who are experienced with MATLAB or Fortran may be used to a loop
beginning from 1 and ending when the loop variable reaches a given value. If we
wish a loop to execute exactly four times, we would write it in MATLAB or Fortran
as

�

1 %MATLAB loop
2 for j=1:4,
3 j
4 end

�

1 ! Fortran loop
2 DO 10 J = 1, 4
3 WRITE(*,*) ’J = ’, J
4 10 CONTINUE

In both cases the variable j (in the MATLAB code) or J (in the Fortran code)
takes values from 1 to 4 inclusive. When programming in C++ it is common to
write the equivalent loop from 0 up to, but not including, 4. That is, j = 0,1,2,3.
The reason for this is that while MATLAB and Fortran use one-based indexing where
array indexing starts at 1, C++ uses zero-based indexing. It is a good idea to write
loops in the form of the second loop given below.

2.6 Tips: Loops and Branches 37

�

1 // This loop is natural for MATLAB programmers
2 for (int j=1; j<=4; j++)
3 {
4 std::cout << "j = " << j << "\n";
5 }
6 // This loop is natural for C++ programmers
7 for (int j=0; j<4; j++)
8 {
9 std::cout << "j = " << j << "\n";

10 }

2.6.3 Tip 3: Equality Versus Assignment

When we introduced relational operators in Table 2.2, we noted that there is a differ-
ence between a single = and a double ==. The operator = is an assignment operator
which takes the value on the right-hand side and assigns it to the variable on the
left-hand side. The equality operator == returns true if, and only if, the values on
the left and right are equal.

A common programming error is to mistake one for the other.

�

1 // This erroneous line has no effect
2 x == 2+2;
3 // After testing x against the value 4, the true/false
4 // answer is discarded.
5

6 x = 3;
7 //This erroneous line will alter the value of x
8 if (x = 4)
9 {

10 x = 6;
11 }

The code above shows two common unintended bugs in C++ code. Line 2 of this
code will test whether or not the variable x is equal to 4, but assign no value to x.
This line therefore has no overall effect. However, the compiler may give no error
since it is valid syntax. The second error is shown in lines 8–11 of the code. In this
case, line 8 of the code uses assignment (a single equals sign) when equality testing
(a double equals sign) was intended. This code will have the effect of changing
the value of x to the value 4 when this was not intended. The condition which is
actually tested is whether or not the assignment was successful. The assignment
will be successful, and so this condition is met. The code inside the curly brackets
therefore will be executed, and so the variable x will take the value 6. Again, this is
valid syntax so the compiler may give no error.

38 2 Flow of Control

Some compilers may report these types of problems as either warnings or er-
rors. You may be able to ensure that the compiler informs you of these quite subtle
problems by switching on warnings, as we described in Sect. 1.3.3.

If we include the above in a program called Tip.cpp, and compile with the
flag to switch on all warnings, then the GNU C++ compiler gives the following
warnings:

�

$ g++ -Wall Tip.cpp
Tip.cpp: In function ‘int main(int, char**)’:
Tip.cpp:2: warning: statement has no effect
Tip.cpp:8: warning: suggest parentheses around assignment used as
truth value

We see that, although the offending lines are not doing what was intended, an ex-
ecutable that can be run is still produced. If we compile with the compilation flag
-Werror discussed in Sect. 1.3.3, then the warnings now become errors, and so
no executable program is produced. In this case, we get the following output at
compilation time:

�

$ g++ -Wall -Werror Tip.cpp
cc1plus: warnings being treated as errors
Tip.cpp: In function ‘int main(int, char**)’:
Tip.cpp:2: error: statement has no effect
Tip.cpp:8: error: suggest parentheses around assignment used as
truth value

2.6.4 Tip 4: Never Ending while Loops

As discussed briefly in Sect. 2.3, it is essential to ensure that the code can always
leave a while loop. The code below was written to find the maximum of an array
of four positive numbers called positive_numbers. Why will this code never
leave the while loop?

�

1 double positive_numbers[4] = {1.0, 5.65, 42.0, 0.01};
2 double max = 0.0;
3 int count = 0;
4 while (count < 4)
5 {
6 if (positive_numbers[count] > max)
7 {
8 max = positive_numbers[count];
9 }

10 }

The problem with the code above is that the integer count is not incremented
inside the while statement. The variable count will therefore always take the
value 0, the condition count < 4 will always be satisfied, and the code will never
exit the while loop.

2.7 Exercises 39

2.6.5 Tip 5: Comparing Two Floating Point Numbers

If i and j have been declared as integers, and we want to set another integer variable
k to zero if these variables take the same value, then this may easily be written in
C++ using the following code.

�

1 int i, j, k;
2 if (i == j)
3 {
4 k = 0;
5 }

Suppose, instead, we wanted to set k to zero if two double precision floating
point variables p and q take the same value. It may be thought that a very simple
modification of the code above will suffice, where p and q are declared as double
precision floating point variables and the guard in line 2 of the listing is modified
to test for equality of p and q. This, however, is not the case. Operations between
floating point numbers all induce rounding errors. As a consequence, if the true
value of a calculation is 5, the number stored may be 5.000000000000186. Testing
two double precision floating point variables for equality is unlikely to give the
expected answer, as due to rounding errors it is unlikely that two such variables will
ever be equal. Instead, we should check that the two numbers differ by less than
some very small number,2 as shown below.

�

1 double p, q;
2 int k;
3 if (fabs(p-q) < 1.0e-8)
4 {
5 k = 0;
6 }

2.7 Exercises

2.1 Below is an example fragment of code that uses several features introduced
in this chapter. The variables x, y and z are all double precision floating point
variables.

2If p and q are the results of two calculations which ought to be equal, to within machine pre-
cision, then they many differ by about |p| × DBL_EPSILON, since DBL_EPSILON ∼2e–16 is
defined in #include <cfloat> to be smallest double precision floating point number such
that 1.0+DBL_EPSILON is not equal to 1.0 when rounding errors are taken account of.

40 2 Flow of Control

�

1 double x, y, z;
2 if ((x > y) || (x < 5.0))
3 {
4 z = 4.0;
5 }
6 else
7 {
8 z = 2.0;
9 }

1. Explain, in words, what the fragment of code does.
2. What value would the fragment of code assign to the variable z when the vari-

ables x and y take the following values:
(a) x=10.0, and y=-1.0;
(b) x=10.0, and y=20.0; and
(c) x=0.0, and y=20.0.

3. Modify the code above so that the condition x>y is replaced by x≥y.

2.2 Below is some example code. The exercises below all require modification of
this code. In all cases use a suitable check to ensure your code is correct.

�

1 #include <iostream>
2

3 int main(int argc, char* argv[])
4 {
5 double p, q, x, y;
6 int j;
7

8 return 0;
9 }

1. Set the variable x to the value 5 if either p is greater than or equal to q, or the
variable j is not equal to 10.

2. Set the variable x to the value 5 if both y is greater than or equal to q, and the
variable j is equal to 20. If this compound condition is not met, set x to take the
same value as p.

3. Set the variable x according to the following rule.

x=
⎧⎨
⎩

0, p> q,

1, p≤ q, and j= 10,

2, otherwise.

2.3 In this exercise you are asked to write and test a program which sums a list of
numbers which are provided by a user via std::cin (see Sect. 1.5.2).
1. Write a program that calculates the sum of a collection of positive integers that

are entered by the user from the keyboard. Your program should prompt the user
to enter each integer followed by the return key, and to enter “−1” at the end

2.7 Exercises 41

of the list of integers to be added. Note that there is no need to store the list of
integers: you can keep track of the sum as the user is entering the values.

2. Modify your code so that the code terminates if the sum of integers entered up to
that point exceeds 100.

3. Modify your code so that, if the user has entered an incorrect integer, they may
enter “−2” to reset the sum to zero and begin entering integers again.

2.4 This exercise uses the following vectors and matrices:

u =
⎛
⎝

1
2
3

⎞
⎠ ; v =

⎛
⎝

6
5
4

⎞
⎠ ; A =

⎛
⎝

1 5 0
7 1 2
0 0 1

⎞
⎠ ; B =

⎛
⎝

−2 0 1
1 0 0
4 1 0

⎞
⎠ .

Furthermore, the vector w satisfies w = u − 3v. These vectors and matrices are
stored in arrays using the following program. This program includes code to calcu-
late the vector w.

�

1 #include <iostream>
2

3 int main(int argc, char* argv[])
4 {
5 double u[3] = {1.0, 2.0, 3.0};
6 double v[3] = {6.0, 5.0, 4.0};
7 double A[3][3] = {{1.0, 5.0, 0.0},
8 {7.0, 1.0, 2.0},
9 {0.0, 0.0, 1.0}};

10 double B[3][3] = {{-2.0, 0.0, 1.0},
11 {1.0, 0.0, 0.0},
12 {4.0, 1.0, 0.0}};
13

14 double w[3];
15 for (int i=0; i<3; i++)
16 {
17 w[i] = u[i] - 3.0*v[i];
18 }
19

20 return 0;
21 }

We now define vectors x, y, and z, and matrices C and D, such that

x = u − v,

y = Au,

z = Au − v,

C = 4A − 3B,

D = AB.

42 2 Flow of Control

Develop the program above to calculate the vectors x, y, and z and the matrices
C and D, using loops where possible. Hint: make sure you define arrays of an ap-
propriate size for these variables. Check your answer by printing out the results, and
comparing with direct calculation.

2.5 The inverse of a square matrix of size 2 is given in Sect. A.1.3.
1. Write code to calculate the inverse of the matrix given by

A =
(

4 10
1 1

)
.

2. Check that the inverse calculated is correct by printing out the entries of the
inverse, and comparing with direct calculation.

3. Modify your code to include an assert statement that checks that the determi-
nant of the matrix is nonzero.

2.6 The Newton–Raphson method (see, for example, Kreyszig [2]) is often used to
solve nonlinear equations of the form f (x) = 0. This is an iterative algorithm: given
an initial guess x0, successive iterates satisfy

xi = xi−1 − f (xi−1)

f ′(xi−1)
, i = 1,2,3,

This algorithm may be terminated when |xi − xi−1| < ε for some user-prescribed ε.
In this exercise, we will apply the Newton–Raphson algorithm to the function

f (x) = ex + x3 − 5, with initial guess x0 = 0.
1. Write down (on paper) the Newton–Raphson iteration for this choice of f (x).
2. By using a for loop, and an array for the iterates xi , write a program that imple-

ments the Newton–Raphson iteration for i = 1,2,3, . . . ,100. Print out the value
of xi on each iteration, and confirm that the iteration does converge as i increases.
At this stage, do not worry about terminating the iteration when ε is sufficiently
small.

3. Think of a check that can be performed on the iterates xi , as i becomes larger,
that allows you to have confidence that your solution is correct. Implement this
check in your program.

4. It is not necessary to store the value of xi on each iteration to implement the
Newton–Raphson algorithm. All that is needed is the previous iterate, xi−1, and
the current iterate, xi . Modify your code so that the array representing xi , i =
1,2, . . . ,100 is replaced by two scalar variables, x_prev and x_next.

5. Modify your code so that, by use of a while statement, the iteration terminates
when |x_next-x_prev| < ε. Investigate the use of different values of ε.

3File Input and Output

Being able to transfer data between applications is an essential requirement of most
scientific computing software. For example, data defining the boundary of an ob-
ject may be generated from an image processing application. This data may sub-
sequently be used by many applications written by a variety of users. To allow
exchange of data between applications in this manner requires us to store data in
a clearly specified format. Reading and writing files to a given specification there-
fore plays a key role in scientific computing applications, and is the subject of this
chapter.

3.1 Redirecting Console Output to File

We introduced basic C++ commands for writing text and the contents stored by a
variable to the console in Sect. 1.5. On a Linux system this output may very easily
be redirected to a single file rather than the screen. Should the executable file be
called SampleCode, this output may be printed to the file SampleOutput.txt
by executing at the command line, as described in Sect. 1.3.2, with the executable
name being followed by a specification of the file to be written to, as shown below:

�

$./SampleCode > SampleOutput.txt
$

When output has been redirected to file in this way, you may prefer to print to
screen errors encountered by the program. This can be done using std::cerr as
shown below. The word cerr is a contraction of console error.

�

1 int x, y;
2 if (y == 0)
3 {
4 std::cerr << "Error - division by zero\n";
5 }

J. Pitt-Francis, J. Whiteley, Guide to Scientific Computing in C++,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-4471-2736-9_3, © Springer-Verlag London Limited 2012

43

http://dx.doi.org/10.1007/978-1-4471-2736-9_3

44 3 File Input and Output

6 else
7 {
8 // y not zero
9 std::cout << x/y << "\n";

10 }

The syntax for std::cerr is identical to that for std::cout. When the con-
sole output is not redirected to file there is no difference between the effect of these
two commands. However, when output is redirected to a specified file, only the
std::cout statements are redirected: the output from a std::cerr statement
will still be printed to the screen. Should output from the code above be redirected
to file, then the value given by dividing x by y will be written to the specified file
unless the variable y takes the value zero. Under these circumstances, the message
“Error - division by zero” will be printed to the screen instead.

3.2 Writing to File

In the previous section, we explained how all the output of an application may be
printed to a single file. This may be adequate for some applications, but is definitely
not adequate for all applications. For example, were we to write a code to calculate
the finite element solution of a given differential equation we may want to store the
nodes of the mesh in one file, the connectivity array defining the elements in another
file, the finite element solution in another file, and—perhaps—the nodes comprising
the individual faces of the elements in another file. We therefore need to be able to
write output to more than one file. Although C++ offers an extremely large number
of commands for printing to file, almost all file formats can be achieved by using a
very small subset of these commands.

Writing to, or reading from, file requires the additional header file fstream.
In the code below, we show how to write to file. We first declare an output stream
variable write_output by specifying it as being of type std::ofstream, and
also specify the filename “Output.dat” as shown in line 9. Line 10 then checks
that the file has been successfully opened: we return to this point below. Writing to
file is similar to console output, but replacing std::cout with write_output
in line 13: this writes the entries of the arrays x and y to the file associated with
the output stream variable, in this case Output.dat. Finally, in line 15, when all
required data has been written to file, we “close the file handle”. In Sect. 1.5.1, we
explained that console output is buffered, and so the output may not immediately
be written to the console. Output to file is also buffered: closing the file handle
flushes the buffer: that is, all data that has been buffered is written to file before the
computer executes any further statements. It is important that this is done: if another
part of the program reads a file which is still being written to, then we cannot be
certain what data—if any—has yet been written to disk. Closing the file handle has

3.2 Writing to File 45

the further effect that no more data can be written to this file: this prevents the file
being corrupted by mistakenly attempting to write further data.

Listing 3.1 Basic writing to file
�

1 #include <cassert>
2 #include <iostream>
3 #include <fstream>
4

5 int main(int argc, char* argv[])
6 {
7 double x[3] = {0.0, 1.0, 0.0};
8 double y[3] = {0.0, 0.0, 1.0};
9 std::ofstream write_output("Output.dat");

10 assert(write_output.is_open());
11 for (int i=0; i<3; i++)
12 {
13 write_output << x[i] << " " << y[i] << "\n";
14 }
15 write_output.close();
16 return 0;
17 }

It is also possible to flush a buffer without closing the file handle. This is done in
a similar way as for console output in Sect. 1.5.1, and is demonstrated below for the
output stream variable write_output.

�

write_output.flush();

We explained above that it is important to check that a file has been opened
(line 10 of the Listing 3.1) before attempting to write any data to it. If the file cannot
be opened—perhaps we did not have permission to write to that file, or a directory
we have specified does not exist—then writing to the ofstream may cause no
error even though writing to the file is not possible. For example, if in line 9 we
renamed the location of the output file to a folder we are restricted from writing to

�

9 std::ofstream write_output("/etc/Output.dat");

then we might expect the program to fail as we are unlikely to have permission to
write to the folder /etc/. However, without the test for the file being open the code
will exit normally, producing no output file. This would clearly be very frustrating
for the user of the code.

The executable created from Listing 3.1 will create a new file, Output.dat, if
this file does not already exist. If this file does exist, the executable generated from
the listing above will delete the original file and write a new file with the same name:
the original contents of the file will be lost. Whether or not the file Output.dat

46 3 File Input and Output

existed before the code above was executed, after execution there will be a file called
Output.dat that is listed below.

Listing 3.2 The file Output.dat
�

0 0
1 0
0 1

The code in Listing 3.1 may do what was required, but it may not. Suppose that,
rather than deleting the file if it exists, we want our code to append data to the end
of this file. This would be achieved by modifying line 9 of Listing 3.1 to

�

9 std::ofstream write_output("Output.dat", std::ios::app);

If the file Output.dat did not exist and we were to execute the code in List-
ing 3.1, with line 9 modified as shown above, we would then create the file Out-
put.dat shown in Listing 3.2. If we were then to execute the code a second time,
we would then end up with the file Output.dat being modified as shown in List-
ing 3.3 below.

Listing 3.3 Modified file Output.dat
�

0 0
1 0
0 1
0 0
1 0
0 1

3.2.1 Setting the Precision of the Output

The key formatting command for scientific computing applications is specification
of the precision of the output. This is demonstrated in the listing below. The number
in brackets after the precision commands specifies the number of significant fig-
ures that the output is correct to. Note that when the precision is set to 10 significant
figures in line 15 of the listing below only eight significant figures will be printed:
this is because the variable x is only given to eight significant figures, and so the
remaining accuracy requested is redundant.

�

1 #include <iostream>
2 #include <fstream>
3

4 int main(int argc, char* argv[])

3.3 Reading from File 47

5 {
6 double x = 1.8364238;
7 std::ofstream write_output("Output.dat");
8

9 write_output.precision(3); // 3 sig figs
10 write_output << x << "\n";
11

12 write_output.precision(5); // 5 sig figs
13 write_output << x << "\n";
14

15 write_output.precision(10); // 10 sig figs
16 write_output << x << "\n";
17 write_output.close();
18

19 return 0;
20 }

3.3 Reading from File

When reading from file we first need to declare an input stream variable in a similar
way to the output stream variable described in Sect. 3.2, and then specify the file that
we wish to read. As with output to file, the header file fstream should be included.
Reading the file is then performed in a similar way to that described for keyboard
input in Sect. 1.5.2, with std::cin replaced by the input stream variable. Suppose
we want to input the file Output.dat shown in Listing 3.3. We know that this file
has six rows and two columns, and so we may read this file using the code shown

Listing 3.4 Reading column formatted data
�

1 #include <cassert>
2 #include <iostream>
3 #include <fstream>
4

5 int main(int argc, char* argv[])
6 {
7 double x[6], y[6];
8 std::ifstream read_file("Output.dat");
9 assert(read_file.is_open());

10 for (int i=0; i<6; i++)
11 {
12 read_file >> x[i] >> y[i];
13 }
14 read_file.close();
15 return 0;
16 }

48 3 File Input and Output

in Listing 3.4. The assertion in line 9 ensures that Output.dat is on disk in the
correct location and with the correct access privileges: if not, the assertion is tripped
and the code is terminated.

In the code above, we knew that the file we were reading had six rows and two
columns, and so we knew when writing this code that the statements inside the for
loop had to be executed six times. In many scientific computing applications we will
want to read a file, but do not know the length of the file in advance. For example,
we may know that a file contains a list of the coordinates of an unknown number
of points in two dimensions: the file therefore has two columns, but an unknown
number of rows. We cannot use a for loop as we do not know how many times the
statements in this loop need to be executed. Instead, we use the Boolean variable
associated with the input stream variable read_file.eof(). This variable takes
the value true when the end of the file is reached, and allows us—through the
use of a while statement—to carry on reading the file while this variable takes the
value false. Assuming that we know that the number of points is fewer than 100,
we may achieve this using the following code. Note that a potential problem with
this code as given will be addressed in Exercise 3.2.

�

1 #include <cassert>
2 #include <iostream>
3 #include <fstream>
4

5 int main(int argc, char *argv[])
6 {
7 double x[100], y[100];
8 std::ifstream read_file("Output.dat");
9 assert(read_file.is_open());

10

11 int i = 0;
12 while (!read_file.eof())
13 {
14 read_file >> x[i] >> y[i];
15 i++;
16 }
17 read_file.close();
18 return 0;
19 }

One additional feature of reading from file that is of use when writing scientific
computing applications is the ability to rewind a file so that we can read a file starting
from the beginning again. This may be achieved by inserting the statements below
into the code at the point where the file should be rewound.

�

1 read_file.clear();
2 read_file.seekg(std::ios::beg);

3.4 Reading from the Command Line 49

3.4 Reading from the Command Line

In scientific computing applications, it is common for a user to want to set some
of the parameters used themselves when executing the code. For example, if code
has been written to calculate the temperature distribution in a bar using the finite
difference method the user may wish to set the thermal conductivity of the bar, or
the number of nodes used in the finite difference grid, at the same time that the
code is executed. Fortunately, C++ allows the user to do this when running from the
command line.

In Sect. 1.2, we promised to explain the third line of the C++ program given in
Listing 1.1, namely the line of code shown below.

�

3 int main(int argc, char* argv[])

Although we are not quite ready to explain the whole meaning of this line until
we have introduced pointers in Chap. 4, we may explain how this line allows us
to specify input arguments to a program from the command line. Suppose—as de-
scribed above—we want to write code that allows us to specify an integer number
of nodes, number_of_nodes, to be used in a finite difference grid, and a double
precision floating point variable, conductivity, that represents the thermal con-
ductivity of a bar. This is demonstrated by the following code. We will explain the
additional header file cstdlib used in line 2, and the functions atoi and atof
used in lines 15 and 16 at the end of this section: for the time being we will focus
on how to input data from the command line.

�

1 #include <iostream>
2 #include <cstdlib>
3

4 int main(int argc, char *argv[])
5 {
6 std::cout << "Number of command line arguments = "
7 << argc << "\n";
8 for (int i=0; i<argc; i++)
9 {

10 std::cout << "Argument " << i << " = " << argv[i];
11 std::cout << "\n";
12 }
13

14 std::string program_name = argv[0];
15 int number_of_nodes = atoi(argv[1]);
16 double conductivity = atof(argv[2]);
17 std::cout << "Program name = " << program_name << "\n";
18 std::cout << "Number of nodes = " << number_of_nodes;
19 std::cout << "\n";
20 std::cout << "Conductivity = " << conductivity << "\n";
21

22 return 0;
23 }

50 3 File Input and Output

We would instruct the user to specify these parameters by typing the executable
name, followed by the number of nodes to be used in the finite difference grid,
followed by the value for the conductivity: that is, if we want to use 100 nodes and
a conductivity of 5.0 we would compile the code above to produce the executable
CommandLineCode and then enter the following at the command line:

�

./CommandLineCode 100 5.0

This would produce output

�

$./CommandLineCode 100 5.0
Number of command line arguments = 3
Argument 0 = ./CommandLineCode
Argument 1 = 100
Argument 2 = 5.0
Program name = ./CommandLineCode
Number of nodes = 100
Conductivity = 5
$

We see from the code and output above that the integer variable argc con-
tains the number of arguments specified at the command line. In this case this is
three: these are the executable name ./CommandLineCode, the integer 100, and
the floating point number 5.0. These are stored as the ordered list argv[0],
argv[1], argv[2], as is demonstrated when we use the for loop to print
these out. Each of these are stored as arrays of characters, and so we must first
convert these arrays of characters to the appropriate variable types. This is per-
formed by lines 14, 15 and 16 of the code listed. In line 15, we use the function
atoi(argv[1]) to convert the array of characters stored by argv[1] to an in-
teger. Similarly, atof(argv[2]) converts argv[2] to a floating point variable.
The functions atoi and atof require the header file cstdlib which has been
included in line 2.

3.5 Tips: Controlling Output Format

If the files that are written are to be read only by a computer, then it does not really
matter whether these look attractive or not. For example, if a data file is only to be
used for importing into a visualisation package then it does not matter if the format
of this file is opaque to humans provided the visualisation package can read the
file accurately. If, however, humans may want to look at these files then formatting
commands, such as controlling the width of each column may be desirable.

Below we show how to implement three commonly desired formatting tech-
niques which we now list before demonstrating.

3.6 Exercises 51

1. Output in scientific format. Scientific format is where a number is written as a
product of one number with only one significant figure to the left of the decimal
point and an integer power of 10, that is, 465.78 in scientific format is 4.6578 ×
102, which may be written in C++ notation as 4.6578e2. This is achieved by
the use of the flag std::ios::scientific which requires the header file
fstream.

2. Always showing a + or − sign. The default setting for an output stream is
not to print a plus sign before a positive number. To line up numbers in neat
columns, we may wish to always precede a number with a plus or minus sign:
this is achieved by the use of the flag std::ios::showpos which requires
the header file fstream.

3. Precision of scientific output. When scientific format is used the precision
statement works slightly differently to that described in Sect. 3.2.1: in this case
the precision specified is the number of digits after the decimal point, and so
the number of significant figures is one greater than this number (as there is
another significant figure before the decimal point). Furthermore, in contrast to
the precision set in Sect. 3.2.1, when scientific format is used zeros are added
after the decimal point to ensure that all output is of exactly the same width.

These formatting techniques are demonstrated in the code below.
�

1 #include <iostream>
2 #include <fstream>
3

4 int main(int argc, char* argv[])
5 {
6 std::ofstream write_file("OutputFormatted.dat");
7 // Write numbers as +x.<13digits>e+00 (width 20)
8 write_file.setf(std::ios::scientific);
9 write_file.setf(std::ios::showpos);

10 write_file.precision(13);
11

12 double x = 3.4, y = 0.0000855, z = 984.424;
13 write_file << x << " " << y << " " << z << "\n";
14

15 write_file.close();
16 return 0;
17 }

3.6 Exercises

3.1 This question assumes that you are starting from the code in the listing below.
�

1 #include <iostream>
2 #include <fstream>
3

52 3 File Input and Output

4 int main(int argc, char* argv[])
5 {
6 double x[4] = {0.0, 1.0, 1.0, 0.0};
7 double y[4] = {0.0, 0.0, 1.0, 1.0};
8

9 return 0;
10 }

1. Extend the code above to print the arrays x and y to a file called x_and_y.dat
so that the data file has the four elements of x on the top line, and the four
elements of y on the next line.

2. Extend the code so that the output stream is flushed immediately after each line
of the file is written.

3. Extend the code so that the precision is set to 10 significant figures, the output is
in scientific notation, and plus signs are shown for positive numbers.

3.2 This question uses the data file x_and_y.dat that was written in the previous
exercise. The code below assumes that we know that the data file has 4 columns and
that we want to count the number of rows.

�

1 #include <iostream>
2 #include <fstream>
3

4 int main(int argc, char* argv[])
5 {
6 std::ifstream read_file("x_and_y.dat");
7 if (!read_file.is_open())
8 {
9 return 1;

10 }
11 int number_of_rows = 0;
12 while(!read_file.eof())
13 {
14 double dummy1, dummy2, dummy3, dummy4;
15 read_file >> dummy1 >> dummy2;
16 read_file >> dummy3 >> dummy4;
17 number_of_rows++;
18 }
19 std::cout << "Number of rows = "
20 << number_of_rows << "\n";
21 read_file.close();
22 return 0;
23 }

Run the code above. This code does not give the correct answer. Why is this?
Does the code give the correct answer if the final newline character is removed from
the file x_and_y.dat? Modify the code so that it gives the correct answer.
[Hint: You might investigate the use of read_file.fail() which may be used
to probe whether the last read on the file stream was unsuccessful.]

3.6 Exercises 53

3.3 Write code to implement the implicit (or backward) Euler method to solve the
initial value ordinary differential equation

dy

dx
= −y, y(0) = 1,

on the interval 0 ≤ x ≤ 1 using a constant step size h. Allow the user to specify
the number of grid points, N they want to use at the command line, and use an
assert statement to ensure that the number of grid points is greater than 1. Use
the number of grid points to calculate the step size h. Your code should print a file
called xy.dat that has two columns: the calculated values of x; and the calculated
values of y. Plot the data from the file xy.dat and hence compare it with the true
solution y = e−x .
[The implicit Euler method (see, for example, Süli and Mayers [3]) for this problem
results in the difference relation

y0 = 1,
yn − yn−1

h
= −yn, n = 1,2, . . . ,N − 1,

where h is step size and yn is the solution at xn = nh, n = 0,1,2, . . . ,N − 1, where
N is the number of grid points, and we have used zero-based indexing for the vectors
x and y.]

4Pointers

One of the key features of the C++ language is the concept of a pointer. We will
see later in this chapter that pointers are extremely useful for allocating memory
for arrays whose sizes are not known when the code is compiled. We will see in
Chap. 5 that they also have use when writing functions that allow us to repeat the
same operation on different variables.

4.1 Pointers and the Computer’s Memory

Pointers are best introduced by explaining how they relate to the storage of variables
in the computer’s memory.

4.1.1 Addresses

Let us suppose that an integer variable total_sum is declared and assigned the
value 10:

�

int total_sum = 10;

The address—that is, location—of this variable in the computer’s memory is
given by &total_sum and can be printed to the console in the usual way (as
shown below) although this address will not be meaningful to humans.

�

std::cout << &total_sum << "\n";

When the integer variable total_sum is declared, memory is allocated to this
variable, and the location of this memory will not vary throughout execution of the
code. As such, the expression &total_sum, which represents the address of this
location, will take a constant value throughout execution of the code.

J. Pitt-Francis, J. Whiteley, Guide to Scientific Computing in C++,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-4471-2736-9_4, © Springer-Verlag London Limited 2012

55

http://dx.doi.org/10.1007/978-1-4471-2736-9_4

56 4 Pointers

4.1.2 Pointer Variables

In addition to data types such as integers and floating point numbers that we have
encountered earlier in this book, we may also declare pointer variables which are
variables that store addresses—that is, the location in the computer’s memory—of
other variables. In the code below, p_x is a pointer to a double precision floating
point variable, and p_i is a pointer to an integer variable. The pointer p_x may
then be used to store the address of a double precision floating point number, whilst
p_i may be used to store the address of an integer. The asterisk that prefixes these
variables when they are declared indicates that these variables are pointers. In this
book, we follow a coding standard where all pointer variables, apart from those
introduced later in this chapter that represent arrays, have names that begin with p_
to denote that they are a pointer variable: a discussion of conventions such of these
that are used for variable names, which forms a part of what is known as coding
standards, is given in Sect. 6.6.

�

1 double* p_x;
2 int* p_i;

Note that the spacing can vary, so that int* p_i and int *p_i are equiva-
lent. However, int* p_i states more clearly that the type of p_i is a pointer to
an integer, rather than an integer.

All pointer variables require an asterisk when they are declared. Hence, in the
code below, p_x, p_y, p_i are pointers, while j is an integer variable.

�

1 double *p_x, *p_y;
2 int *p_i, j;

When declaring more than one pointer on a line the asterisk must be repeated as
shown in line 1 of the listing above, which means that int* p_i in line 2 would
be less appropriate as only one variable (p_i) is a pointer variable. For this reason,
we recommend only one pointer declaration per line.

Now we have explained how to declare a pointer variable, and what these vari-
ables represent, we now explain how to use them.

4.1.3 Example Use of Pointers

If a variable p_x has been declared as a pointer to a double precision floating point
number, then it is clearly important to distinguish between: (i) the location of the
memory to which this pointer points at (denoted by p_x); and (ii) the contents of
this memory (denoted by *p_x). The asterisk operator in *p_x is called a pointer
de-reference and can be thought of as the opposite to the & operator introduced in
Sect. 4.1.1.

The code below shows how pointers to double precision floating point variables
may be combined with double precision floating point variables.

4.1 Pointers and the Computer’s Memory 57

�

1 double y, z; // y, z store double precision numbers
2 double* p_x; // p_x stores the address of a double
3 // precision floating point number
4 z = 3.0;
5 p_x = &z; // p_x stores the address of z
6 y = *p_x + 1.0; // *p_x is the contents of the memory
7 // p_x, i.e. the value of z

4.1.4 Warnings on the Use of Pointers

A variable pointer should not be used until first having been assigned a valid address.
For example, the following fragment of code may cause problems that are difficult
to locate.

�

1 double* p_x; // p_x can store the address of a double
2 // precision number - haven’t said which
3 // address yet
4

5 *p_x = 1.0; // trying to store the value 1.0 in an
6 // unspecified memory location

In the code above, we haven’t specified the location of the double precision float-
ing point variable that p_x points at. It may therefore be pointing at any location in
the computer’s memory. Changing the contents of an unspecified location in a com-
puter’s memory—as is done in line 5 of the code above—clearly has the potential
to cause problems that may be hard to locate. This problem may be avoided by the
use of the new keyword as shown below to allocate a valid memory address to p_x,
and the delete keyword which releases this memory to be used by other parts of
the program when this memory is no longer required.

�

1 double* p_x; // p_x stores the address of a double
2 // precision floating point number
3

4 p_x = new double; // assigns an address to p_x
5 *p_x = 1.0; // stores 1.0 in memory with
6 // address p_x
7 delete p_x; // releases memory for re-use

A further reason to use pointers with care is shown in the code below. The first
time y is printed (in line 5) it takes the value 3: the second time y is printed (in line 7)
it takes the value 1 even though y is not explicitly altered in the code between these
two lines. This is because the line between the std::cout statements, line 6, has
altered the value of y, possibly unintentionally, by using the pointer variable p_x
(which contains the address of y) to change the value of y.

58 4 Pointers

�

1 double y;
2 double* p_x;
3 y = 3.0;
4 p_x = &y;
5 std::cout << "y = " << y << "\n";
6 *p_x = 1.0; // This changes the value of y
7 std::cout << "y = " << y << "\n";

A situation where the contents of the same variable may be accessed using dif-
ferent names, such as in the code above, is known as aliasing. In C++, this is most
likely to happen when pointers are involved, either when two pointers alias the same
address in memory, or when a pointer references the contents of another variable.
When one or more pointers allow the same variable to be accessed using different
names, the aliasing is known as pointer aliasing.

4.2 Dynamic Allocation of Memory for Arrays

One of the main uses of pointers is the dynamic allocation of memory for storing
arrays. In Sect. 1.4.5, we explained how arrays could be declared when the size
of the array was known in advance. However, we do not always know the sizes of
the arrays in a program when we compile the code. In Sect. 3.4, for example, we
demonstrated how to allow the user of a code to specify the number of nodes in a
finite difference grid when executing the code. If the coordinates of the nodes in
this mesh were to be stored in an array we would not know, when compiling the
code, what size to make this array. Under these circumstances, using the method
of declaring arrays given in Sect. 1.4.5, we have to compile the code with some
estimate of the size of this array. If we overestimate the size of this array, we are
being wasteful of computational memory with the potential effect of preventing the
execution of the code on a system with insufficient memory. If we underestimate
the size of this array, the program will almost certainly crash. In either case, we will
then have to recompile the code with a new estimate of the array size. The use of
pointers to dynamically allocate memory for arrays avoids these problems, as we do
not need to know the array size at compile time.

A further use of pointers for dynamically allocating memory is for the efficient
storage of irregularly sized arrays, for example a lower triangular matrix. If a lower
triangular matrix is stored in an array as described in Sect. 1.4.5, we will have to
allocate the same number of columns to each row of the matrix. As we know that
roughly half these entries are zero, we are being wasteful of computational memory.
Dynamic allocation of memory allows us to allocate memory more prudently.

Memory can be allocated using the new operator, and deallocated using the
delete operator.

4.2 Dynamic Allocation of Memory for Arrays 59

4.2.1 Vectors

To use pointers to create a one-dimensional array of double precision floating point
numbers of length 10 called x, we use the following section of code.

�

1 double* x;
2 x = new double [10];

The elements of the array may then be accessed in exactly the same way as if the
array had been created by using the type of declaration introduced in Sect. 1.4.5. In
the dynamic allocation of memory for the array using the pointer x above, x stores
the address of the first element of the array. This can be seen by printing out both
the pointer x and the address of the first element of the array, as shown below.

�

1 std::cout << x << "\n";
2 std::cout << &x[0] << "\n"; //prints the same value

The memory allocated to x may be, and should be, deallocated by using the
statement below when this array is no longer required.

�

delete[] x;

Always be sure to free any memory allocated when it is no longer required—a
code can very quickly use all available memory otherwise. In later chapters of this
book, when we develop a class of vectors, we will see that one advantage of writing
a class of vectors is that memory allocated to a vector is automatically freed when
appropriate.

An example code that uses dynamically allocated memory for arrays is shown
below. This code creates two arrays, x and y, both of size 10. Elements of x are
then assigned manually. Elements of y are then set to be twice the value of the
corresponding element of x. Finally, all memory allocated is deleted.

�

1 #include <iostream>
2

3 int main(int argc, char* argv[])
4 {
5 double* x;
6 double* y;
7 x = new double [10];
8 y = new double [10];
9

10 for (int i=0; i<10; i++)
11 {
12 x[i] = ((double)(i));
13 y[i] = 2.0*x[i];
14 }

60 4 Pointers

15

16 delete[] x;
17 delete[] y;
18

19 return 0;
20 }

4.2.2 Matrices

Memory for matrices may also be allocated dynamically. For example, to create a
two-dimensional array of double precision floating point numbers with 5 rows and
3 columns called A we use the following section of code.

Listing 4.1 Dynamic memory allocation for a matrix
�

1 int rows = 5, cols = 3;
2 double** A;
3 A = new double* [rows];
4 for (int i=0; i<rows; i++)
5 {
6 A[i] = new double [cols];
7 }

The array may then be used in exactly the same way as if it had been created by
using the declaration

�

double A[5][3];

When allocating memory for the matrix dynamically in the code above, the vari-
able A—which has been declared using line 2 of Listing 4.1—has the following
properties after the fragment of code has been executed:
• each A[i] is a pointer, and contains the address of A[i][0]; and
• A contains the address of the pointer A[0].
As such, the variable A is an array of pointers, which explains the two asterisks in
line 2 of Listing 4.1. Line 3 of this listing specifies that A is a pointer to an array
of pointers to double precision floating point numbers, and that this array is of size
rows. The for loop in this listing then specifies that each pointer in the array
itself points to an array of double precision floating point numbers of length cols.
This has the effect that A[i]—which is a pointer—stores the address of the entry
A[i][0], that is, the first entry of row i.

As was the case for vectors, it is important to deallocate memory dynamically
allocated for a matrix when it is no longer needed. The memory allocated for the
matrix A in Listing 4.1 may be freed using the following code.

4.2 Dynamic Allocation of Memory for Arrays 61

�

1 for (int i=0; i<rows; i++)
2 {
3 delete[] A[i];
4 }
5 delete[] A;

We cannot emphasise enough how important it is to always delete any memory
dynamically allocated, particularly memory allocated inside loops—if not you will
soon run out of memory.

4.2.3 Irregularly Sized Matrices

Suppose we want to construct a lower triangular matrix A of integers with 1,000
rows and 1,000 columns. This may be clearly be done using the declaration below.

�

int A[1000][1000];

However, the declaration above wastes a considerable amount of memory stor-
ing the super-diagonal entries of the matrix which we know in advance all take
the value 0. We may avoid wasting this memory by allocating the memory for this
matrix dynamically, and only allocating memory for the diagonal and sub-diagonal
elements. This is demonstrated in the fragment of code below, where in row i of
the matrix we declare i+1 nonzero elements: that is, 1 element in row 0, 2 ele-
ments in row 1, and so on. Memory can, and should be, deleted in the same way as
demonstrated in the previous section when this array is no longer required.

�

1 int** A;
2 A = new int* [1000];
3 for (int i=0; i<1000; i++)
4 {
5 A[i] = new int[i+1];
6 }

Although the fragment of code above does correctly allocate the memory re-
quired for a lower triangular matrix it should be used with care: errors would result
if, for example, the entry A[9][19] were to be used in a code. When we develop
classes later in this book, we will see how the use of classes may avoid problems
such as this.

62 4 Pointers

4.3 Tips: Pointers

The concept of pointers is one that inexperienced C++ programmers often struggle
with. We strongly urge the reader to attempt the exercises at the end of this chapter
to improve their understanding of this topic. In this section, we give tips on the use
of pointers.

4.3.1 Tip 1: Pointer Aliasing

In Sect. 4.1.4, we gave an example where a pointer variable p_x was pointing to the
memory location of the double variable y. A change was made to that variable
by de-referencing the pointer p_x. This situation might lead to some confusion,
although in a short code fragment it is easy to see that the two variables are leading
to the same place: *p_x is an alias for y.

In large-scale programs, it may not be so easy to see where pointers are aliases for
other variables. This is because the information that two names are pointing to same
place may not be available in the same screen-full of code, or even in the same file.
A good example of this would be a vector or matrix addition operation in which the
vectors or matrices are stored as arrays and passed into a function via pointers. We
will deal with functions in the next chapter, but for now you need to be aware that
the code for the function may be in a different file and that the variables may take
different names inside the function definition. The operation to compute the matrix
sum A = B + C would probably be implemented in such a function by a nested
loop over the elements of the arrays, so that the actual implementation becomes
an element-wise A[i][j] = B[i][j] + C[i][j]. There may be unknown
pointer-aliasing in this function, because the user might wish to increment one ma-
trix by another, i.e. to compute X = X + Y. It turns out that this pointer aliasing
will be safe, because the inner loop will effectively be calculating X[i][j] +=
Y[i][j] as intended. Each of the (i, j) components of the result is independent of
the others.

However, what if the user were using a matrix–matrix product operation? In
the computation A = BC, the component A[i][j] depends on parts of B and
C other than B[i][j] and C[i][j]. This means that, if the user wishes to com-
pute X = XY using a function written for calculating A = BC, there is a chance
that some components of X will be written to before they are read—leading to
an incorrect calculation. One way to resolve this aliasing issue is to produce the
matrix–matrix product result in temporary storage before copying it into the output
argument A. However, this solution is inefficient in cases where there is no pointer
aliasing, especially when the sizes of the matrices are large. Another solution to the
issue is to provide two versions of the matrix-matrix product operation: one which
is efficient but only safe to use when there is no pointer aliasing and one which is
safe to use in all circumstances.

One can see that the problem of pointer aliasing is deeper than might appear from
the trivial example in Sect. 4.1.4. In general, there is no correct solution to these is-
sues. Compiler writers spend a great deal of time finding places where pointer alias-

4.3 Tips: Pointers 63

ing has (or has not) definitely happened so that code optimisation is only applied in
situations where it is safe to do so.

4.3.2 Tip 2: Safe Dynamic Allocation

There may be circumstances under which it is not possible to allocate memory either
because the number of items in an array has been set with a negative argument or
because there is not enough physical memory available to the program. Setting the
number of elements in an array to a negative number is easier than you might think.
If the size of a problem is configured via an input file, then a size may easily be
mistyped. More subtly, if a number is assigned to an integer that is larger than the
maximum value that can be stored by that integer, then the integer value stored may
actually be a negative number: this is known as an overflow error.

Implementations of C++ may vary over how they treat such errors. The default
behaviour is to throw an exception when a memory error is encountered. We will
deal with catching exceptions in Chap. 9 and note that an exception could terminate
your program. Should your implementation of C++ not throw this sort of exception,
then a safe way to program is to test that your variable has been assigned a value as
the code fragment below illustrates.

�

1 double* p_x;
2 p_x = new double[10000];
3 assert (p_x != NULL);

4.3.3 Tip 3: Every new Has a delete

We pointed out earlier in this chapter that all dynamically allocated memory must
be freed, or else you may run out of memory. This problem is particularly noticeable
when memory is dynamically allocated inside the body of a for loop, such as the
one shown below.

�

1 for (int i=0; i<10000; i++)
2 {
3 double** A;
4 A = new double* [50];
5 for (int j=0; j<50; j++)
6 {
7 A[j] = new double [50];
8 }
9 }

Each time the body of the loop in the code above is executed, new memory is al-
located for the array A. The memory from the previous execution has not yet been

64 4 Pointers

freed, although it will not be available as the array A will be stored in the memory
that has been allocated most recently: there is no automatic garbage collection for
memory which is no longer accessible. You will see, when we discuss functions in
Chap. 5, that the same problem may arise when memory is allocated inside func-
tions, but not freed before the function ends.

If you do not delete memory which you have allocated dynamically, then that
memory will not be accessible until your program finishes (when all memory is
handed back to the system). If you request more memory than you need, then it may
be that the physical memory of the computer will be exhausted—your computer will
run much more slowly and further memory allocation may fail.

There are several ways around this issue. The first and foremost is to ensure that
every new in your program is matched with a delete somewhere else. A second
way to make sure that inaccessible or unnecessary memory is freed up is to run
your program through a memory debugger (see Sect. 10.6 for more details). Another
solution, adopted by seasoned C++ programmers is to use shared pointers. These are
an advanced language feature which allow memory to be automatically de-allocated
once there is no longer any other part of the program which can access it.

4.4 Exercises

4.1 Write code that declares an integer i to take the value 5. Declare a pointer to
an integer p_j, and store the address of i in this pointer. Multiply the value of the
variable i by 5 by using a line of code that only uses the pointer variable. Declare
another pointer to an integer p_k and use the new keyword to allocate a location
in memory that this pointer stores. Then store the contents of the variable i in this
location.

4.2 Assign values to two integer variables. Swap the values stored by these variables
using only pointers to integers.

4.3 Write code that allocates memory dynamically to two vectors of double preci-
sion floating point numbers of length 3, assigns values to each of the entries, and
then de-allocates the memory before the code terminates. Extend this code so that it
calculates the scalar (dot) product of these vectors and prints it to screen before the
memory is de-allocated. Put the allocation of memory, calculation and de-allocation
of memory inside a for loop that runs 1,000,000,000 times: if the memory is not
de-allocated properly your code will use all available resources and your computer
may struggle.

4.4 Write code that dynamically allocates memory for three 2 × 2 matrices of dou-
ble precision floating point numbers, A, B, C, and assigns values to the entries of
A and B. Let C= A+ B. Extend your code so that it calculates the entries of C, and
then prints the entries of C to screen. Finally, de-allocate memory. Again, check you
have de-allocated memory correctly by using a for loop as in the previous exercise.

5Blocks, Functions and Reference Variables

The code developed in this book up to this point has been restricted to code that
may be placed inside curly brackets after the initial line of code “int main(int
argc, char* argv[]);”. Readers with previous programming experience will
be aware of the limitations this places when writing code. For example, if we were
to apply the same operations in different places in the code we would have to repeat
the lines of code that performed these operations everywhere in the code where
they were required. It would be much more convenient if we could write a function
that we could call whenever we wanted to perform these operations. This chapter
introduces the C++ machinery for writing functions.

5.1 Blocks

A block is any piece of code between curly brackets. A variable, when declared
inside a block, may be used throughout that block, but only within that block. This
is demonstrated in the code below. In line 9, we attempt to use the variable j when
it is only declared—and therefore available—in the block enclosed within the curly
brackets in lines 4 and 8. In the language of programmers, “the scope of j is the
block between lines 4 and 8”. If we attempted to use the code fragment below, the
compiler would report this attempted use of j as an error: j is said to be out of scope
at line 9.

�

1 {
2 int i;
3 i = 5; // OK
4 {
5 int j;
6 i = 10; // OK
7 j = 10; // OK
8 }
9 j = 5; // incorrect - j not declared here

10 }

J. Pitt-Francis, J. Whiteley, Guide to Scientific Computing in C++,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-4471-2736-9_5, © Springer-Verlag London Limited 2012

65

http://dx.doi.org/10.1007/978-1-4471-2736-9_5

66 5 Blocks, Functions and Reference Variables

The same variable name may be used for a variable declared both inside a
block—termed the local variable—and outside the scope of any function (including
the main function)—termed the global variable. Both of these variables may be
accessed inside the block as shown in the code below, using the example of both a
global and a local variable called i. Furthermore, we may define a variable j in both
the outer block and the inner block: inside the inner block the value of j stored by
the variable declared in the outer block is not accessible. The multiple declaration of
both i and j in the code below is bad programming practice, as it can clearly lead
to confusion. In fact, since the scope of variables is so important, we suggest that
variables are declared only within the block where they are needed, close to their
first use.

�

1 #include <iostream>
2 int i = 5; // global i
3

4 int main(int argc, char* argv[])
5 {
6 int j = 7;
7 std::cout << i << "\n";
8 {
9 int i = 10, j = 11;

10 std::cout << i << "\n"; // local value of i is 10
11 std::cout << ::i << "\n"; // global value of i is 5
12 std::cout << j << "\n"; // value of j here is 11
13 //The other j (value 7) is inaccessible
14 }
15 std::cout << j << "\n"; // value of j here is 7
16 return 0;
17 }

5.2 Functions

Now that we have defined what we mean by a block of code we may demonstrate
how to write functions.

5.2.1 Simple Functions

A simple program that writes and uses a function to determine the minimum value of
two double precision floating point variables x and y, and stores it in the double pre-
cision variable minimum_value is shown below. Note the function prototype that
is line 3 in the listing below. The function prototype tells the compiler what input
variables are required, and what variable, if any, is returned. In the example below,
the function prototype explains that later in the code there will be a function called
CalculateMinimum that requires two double precision floating point variables

5.2 Functions 67

as input, and returns one double precision floating point variable. The function pro-
totype can be thought of as being similar to declaring a variable. The variable names
a and b in the prototype are ignored by the compiler and don’t have to be included,
but their inclusion can clarify the program. Note that the function prototype ends
with a semi-colon.

Lines 15–29 of the code contain the statements that perform the tasks required
by the function. This code begins with a line of code that is identical to the function
prototype (including the variable names) without the semi-colon. After this there is
a block of code that ends with a return statement that returns the value required to
the point in the code where this function was called from. Note that there is no need
to declare the variables a and b inside the function—the declaration in line 15 has
done this already. Variables such as minimum that are used inside the function but
are not part of the function prototype must be declared within the function block.
Line 8 demonstrates how to call a function: the variables in brackets (x and y in this
case) are sent to the function, and are known as the arguments of the function. The
variable returned from the function is stored as minimum_value.

�

1 #include <iostream>
2

3 double CalculateMinimum(double a, double b);
4

5 int main(int argc, char* argv[])
6 {
7 double x = 4.0, y = -8.0;
8 double minimum_value = CalculateMinimum(x, y);
9 std::cout << "The minimum of " << x << " and " << y

10 << " is " << minimum_value << "\n";
11

12 return 0;
13 }
14

15 double CalculateMinimum(double a, double b)
16 {
17 double minimum;
18 if (a < b)
19 {
20 minimum = a;
21 }
22 else
23 {
24 // a >= b
25 minimum = b;
26 }
27

28 return minimum;
29 }

Note that only one variable may be returned from a function. Although sufficient
for some purposes, we may sometimes want to return more variables. We will see
how this may be done later in this chapter. Of course, there are some circumstances

68 5 Blocks, Functions and Reference Variables

where we do not want a function to return any variable: such functions may be
prototyped as a void function. The code below contains an example of a function
that prints out a message informing a candidate whether or not they have passed
an exam. This function requires two integer variables as input: the first of these
contains the mark that a candidate has scored; the second contains the pass mark for
the exam.

�

1 #include <iostream>
2

3 void PrintPassOrFail(int score, int passMark);
4

5 int main(int argc, char* argv[])
6 {
7 int score = 29, pass_mark = 30;
8 PrintPassOrFail(score, pass_mark);
9

10 return 0;
11 }
12

13 void PrintPassOrFail(int score, int passMark)
14 {
15 if (score >= passMark)
16 {
17 std::cout << "Pass - congratulations!\n";
18 }
19 else
20 {
21 // score < passMark
22 std::cout << "Fail - better luck next time\n";
23 }
24 }

A function can only change the value of a variable sent to a function inside that
function: changes will have no effect on this variable after the function has been ex-
ecuted and the code continues to execute statements in the block where the function
has been called from. This is because a copy is made of any variable that is sent to
a function, and it is this copy of the variable, and not the original variable, that is
modified inside the function. For example, the following function has no effect on
the variable x outside the function, even though the value of x is changed inside the
function.

�

1 #include <iostream>
2

3 void HasNoEffect(double x);
4

5 int main(int argc, char* argv[])
6 {
7 double x = 2.0;
8 HasNoEffect(x);

5.2 Functions 69

9 std::cout << x << "\n"; // will print out 2.0
10

11 return 0;
12 }
13

14 void HasNoEffect(double x)
15 {
16 // x takes the value 2.0 here
17 x += 1.0;
18 // x takes the value 3.0 here
19 }

5.2.2 Returning Pointer Variables from a Function

In Sect. 5.2.1, we demonstrated how to write functions that returned either a vari-
able that wasn’t a pointer, or had no return type. Functions can be used to return
pointer variables as well, as shown in the code below. In this case, we have written a
function that allocates memory for a matrix dynamically, and returns the pointer to
the memory allocated. The array can then be used as if the memory were allocated
in the main function, as demonstrated in lines 8 and 9.

�

1 double** AllocateMatrixMemory(int numRows, int numCols);
2 void FreeMatrixMemory(int numRows, double** matrix);
3

4 int main(int argc, char* argv[])
5 {
6 double** A;
7 A = AllocateMatrixMemory(5, 3);
8 A[0][1] = 2.0;
9 A[4][2] = 4.0;

10 FreeMatrixMemory(5, A);
11 return 0;
12 }
13

14 // Function to allocate memory for a matrix dynamically
15 double** AllocateMatrixMemory(int numRows, int numCols)
16 {
17 double** matrix;
18 matrix = new double* [numRows];
19 for (int i=0; i<numRows; i++)
20 {
21 matrix[i] = new double [numCols];
22 }
23 return matrix;
24 }
25

26 // Function to free memory of a matrix
27 void FreeMatrixMemory(int numRows, double** matrix)

70 5 Blocks, Functions and Reference Variables

28 {
29 for (int i=0; i<numRows; i++)
30 {
31 delete[] matrix[i];
32 }
33 delete[] matrix;
34 }

5.2.3 Use of Pointers as Function Arguments

We concluded Sect. 5.2.1 by explaining that any changes to a variable made inside
a function would have no effect outside that function. This has the advantage that
if a variable is altered unintentionally then the impact of this is localised to the
function where this unintentional alteration was made. However, there are occasions
where we do wish changes to a variable inside a function to have an effect outside a
function. For example, if we are given a complex number in polar form, z = reiθ , we
may wish to write a function that returns the real part, denoted by the variable x, and
imaginary part, denoted by the variable y, of this number. We have noted earlier that
a function can only return one variable, and so we may not return both the variable
x and the variable y. It would therefore be useful to include the variables x and y
in the function call. However, this would not work either, as the values assigned to
these variables would not have any effect outside the function. Fortunately pointers
provide us with one way around this problem. Instead of sending the variables x
and y to the function, we send the addresses of these variables to the function.
When the function is called, copies are made of the addresses of these variables,
and it is these copies that are sent to the function. Changes to these addresses will
not have any effect outside the function as we are working with a copy of these
addresses. However, we can change the contents of the variable without changing
the address through de-referencing the pointer, and this will have an effect outside
of the function. This is demonstrated in the code below.

Note that lines 4–6 of the code are really meant to be one long line, giving the
function prototype of CalculateRealAndImaginary. Since the line is long,
we have split it across several lines and indented the continuation lines for clarity
(see Sect. 6.6). The prototype lists the arguments for the function. The first two
arguments are double precision floating point variables representing the magnitude
(denoted by r) and argument (denoted by theta) of the specified complex number.
The third and fourth arguments are pointers to—that is, the addresses of—the real
part and imaginary part of the complex number. In line 12, we declare integers x
and y that represent the real and imaginary parts of the complex number. To use
the function CalculateRealAndImaginary, we send the addresses of these
variables to the function. Behind the scenes a copy of these addresses is made, and
it is these copies that are used in the function in lines 20–26. However, these copies

5.2 Functions 71

refer to the same memory as the original variables x and y, and so it is this memory
that the results of the calculations in lines 24 and 25 are stored in.

Listing 5.1 Use of pointers with functions
�

1 #include <iostream>
2 #include <cmath>
3

4 void CalculateRealAndImaginary(double r, double theta,
5 double* pReal,
6 double* pImaginary);
7

8 int main(int argc, char* argv[])
9 {

10 double r = 3.4;
11 double theta = 1.23;
12 double x, y;
13 CalculateRealAndImaginary(r, theta, &x, &y);
14 std::cout << "Real part = " << x << "\n";
15 std::cout << "Imaginary part = " << y << "\n";
16

17 return 0;
18 }
19

20 void CalculateRealAndImaginary(double r, double theta,
21 double* pReal,
22 double* pImaginary)
23 {
24 *pReal = r*cos(theta);
25 *pImaginary = r*sin(theta);
26 }

5.2.4 Sending Arrays to Functions

When sending arrays to functions—whether or not the memory has been allocated
dynamically—it should be noted that it is the address of the first element of the array
that is being sent to the function. In common with sending the pointer to a variable
to a function, changes to this address will not have an effect in the code from which
this function is called: however, the contents of this address—that is, the contents of
the array—may be changed. As such, any changes made to an array inside a function
will have an effect when that variable is used subsequently outside the function.

We begin by showing how to send arrays whose size is known at compile time to
a function. This is shown in the listing below. Note that we do not have to specify the
size of the first index of an array in the function prototype. This size is computed by
the compiler. It may be included if desired, but this will be ignored when the code
is compiled.

72 5 Blocks, Functions and Reference Variables

�

1 #include <iostream>
2 #include <cmath>
3

4 void DoSomething(double u[], double A[][10],
5 double B[10][10]);
6

7 int main(int argc, char* argv[])
8 {
9 double u[5], A[10][10], B[10][10];

10

11 DoSomething(u, A, B);
12

13 // This will print the values allocated in
14 // the function DoSomething
15 std::cout << u[2] << "\n";
16 std::cout << A[2][3] << "\n";
17 std::cout << B[3][3] << "\n";
18

19 return 0;
20 }
21

22 void DoSomething(double u[], double A[][10],
23 double B[10][10])
24 {
25 u[2] = 1.0;
26 A[2][3] = 4.0;
27 B[3][3] = -90.6;
28 }

Arrays whose size has been dynamically allocated can also be sent to a function.
Example code for this is shown below.

�

1 #include <iostream>
2 #include <cmath>
3

4 void DoSomething(double* u, double** A);
5

6 int main(int argc, char* argv[])
7 {
8 double* u = new double [10];
9 double** A = new double* [10];

10 for (int i=0; i<10; i++)
11 {
12 A[i] = new double [10];
13 }
14

15 DoSomething(u, A);
16

17 // This will print the values allocated in
18 // the function DoSomething
19 std::cout << u[2] << "\n";

5.2 Functions 73

20 std::cout << A[2][3] << "\n";
21

22 delete[] u;
23 for (int i=0; i<10; i++)
24 {
25 delete[] A[i];
26 }
27 delete[] A;
28

29 return 0;
30 }
31

32 void DoSomething(double* u, double** A)
33 {
34 u[2] = 1.0;
35 A[2][3] = 4.0;
36 }

5.2.5 Example: A Function to Calculate the Scalar Product of Two
Vectors

Suppose we want to calculate the scalar product of two vectors of double precision
floating point numbers of length n. Calculating the scalar product could be embed-
ded within a function that inputs the two arrays, and the length n of both vectors,
and returns a double precision floating point variable that represents the scalar prod-
uct of the two vectors: see Sect. A.1.2 for a discussion of how to calculate the scalar
product of two vectors. We would first need to allocate memory for the two vec-
tors. We could then call the function that calculates the scalar product, before finally
deleting the memory allocated to the two vectors. Code for this is shown below.

�

1 #include <iostream>
2

3 double CalculateScalarProduct(int size, double* a,
4 double* b);
5

6 int main(int argc, char* argv[])
7 {
8 int n = 3;
9 double* x = new double [n];

10 double* y = new double [n];
11 x[0] = 1.0; x[1] = 4.0; x[2] = -7.0;
12 y[0] = 4.4; y[1] = 4.3; y[2] = 76.7;
13 double scalar_product = CalculateScalarProduct(n, x, y);
14 std::cout << "Scalar product = "
15 << scalar_product << "\n";
16 delete[] x;
17 delete[] y;
18

74 5 Blocks, Functions and Reference Variables

19 return 0;
20 }
21

22 double CalculateScalarProduct(int size, double* a,
23 double* b)
24 {
25 double scalar_product = 0.0;
26 for (int i=0; i<size; i++)
27 {
28 scalar_product += a[i]*b[i];
29 }
30 return scalar_product;
31 }

5.3 Reference Variables

In Sect. 5.2.3, we demonstrated the use of pointers to allow changes made to a
variable within a function to have an effect outside the function, and showed how
this could be used to allow a function to, in effect, return more than one variable.
An alternative to using pointers is to use reference variables: these are variables that
are used inside a function that are a different name for the same variable as that sent
to a function. When using reference variables any changes inside the function will
have an effect outside the function. These are much easier to use than pointers: all
that has to be done is the inclusion of the symbol & before the variable name in the
declaration of the function and the prototype—this indicates that the variable is a
reference variable. It is actually the case that references behave like pointers behind
the scenes, but without having to convert to an address with & on the function call
(as in Listing 5.1) and without having to de-reference inside the function—they
provide a layer of syntactic sugar to ease the programmer’s burden. We now modify
the example code in Listing 5.1 that wrote a function that calculated the real and
imaginary parts of a complex number given in polar form to use references instead
of pointers.

�

1 #include <iostream>
2 #include <cmath>
3

4 void CalculateRealAndImaginary(double r, double theta,
5 double& real,
6 double& imaginary);
7

8 int main(int argc, char* argv[])
9 {

10 double r = 3.4;
11 double theta = 1.23;
12 double x, y;
13 CalculateRealAndImaginary(r, theta, x, y);

5.4 Default Values for Function Arguments 75

14 std::cout << "Real part = " << x << "\n";
15 std::cout << "Imaginary part = " << y << "\n";
16

17 return 0;
18 }
19

20 void CalculateRealAndImaginary(double r, double theta,
21 double& real,
22 double& imaginary)
23 {
24 real = r*cos(theta);
25 imaginary = r*sin(theta);
26 }

5.4 Default Values for Function Arguments

If we are writing a function to implement an iterative technique, such as the Newton–
Raphson technique for finding a root of a nonlinear equation, we will usually be con-
tent if the solution is accurate to within a tolerance of, say, 10−6. Only on very rare
occasions would we want to change this tolerance. We might also want to restrict the
number of function evaluations: the Newton–Raphson iteration will probably be im-
plemented using a while loop, and numerical rounding errors may prevent the er-
ror being sufficiently small for the iteration to terminate. Under these conditions, we
would never exit the while loop, and the program that called this function would
never terminate. It would therefore be prudent to write a function for implementing
the Newton–Raphson technique that sets a default tolerance for the solution, and a
default maximum number of iterations. We would then be able to call this function
without specifying these default values. However, if we did want to call this function
with different values then we would like to be able to do this. This is easily achieved
by setting default values in the function prototype. This is demonstrated below in a
program that uses the Newton–Raphson technique for calculating the cube root of a
given number K through solving the nonlinear equation f (x) = x3 − K = 0. Using
a given initial guess x0, the Newton–Raphson method results in the iteration

xn = xn−1 − x3
n−1 − K

3x2
n−1

, n = 1,2,3,

By setting default values for the tolerance and maximum number of function it-
erations we may call the function using one of: (i) the default values of these pa-
rameters; (ii) specifying the tolerance (the first optional parameter in the function
prototype) and using the default maximum number of function iterations; and (iii)
specifying both of these parameters. All three of these cases are shown below.

�

1 #include <cmath>

76 5 Blocks, Functions and Reference Variables

2 #include <iostream>
3

4 void CalculateCubeRoot(double& x, double K,
5 double tolerance = 1.0e-6,
6 int maxIterations = 100);
7

8 int main(int argc, char* argv[])
9 {

10 double x = 1.0;
11 double K = 12.0;
12

13 // Calculate cube root using default values
14 CalculateCubeRoot(x, K);
15

16 // Calculate cube root using a tolerance of 0.001 and the
17 // default maximum number of iterations
18 double tolerance = 0.001;
19 CalculateCubeRoot(x, K, tolerance);
20

21 // Calculate cube root using a tolerance of 0.001 and a
22 // maximum number of iterations of 50
23 int maxIterations = 50;
24 CalculateCubeRoot(x, K, tolerance, maxIterations);
25

26 return 0;
27 }
28

29 void CalculateCubeRoot(double& x, double K,
30 double tolerance, int maxIterations)
31 {
32 int iterations = 0;
33 double residual = x*x*x-K;
34 while ((fabs(residual) > tolerance) &&
35 (iterations < maxIterations))
36 {
37 x = x-(x*x*x-K)/(3.0*x*x);
38 residual = x*x*x-K;
39 iterations++;
40 }
41 }

5.5 Function Overloading

Suppose we want to write one function to multiply a vector by a scalar, and an-
other function to multiply a matrix by a scalar. It would seem natural to call both
these functions Multiply. This is allowed in C++: we write different function
prototypes and functions for both of these operations: the compiler then chooses
the correct function based on the input arguments. This is demonstrated in the code
below, and is known as function overloading.

5.5 Function Overloading 77

�

1 #include <iostream>
2

3 void Multiply(double scalar, double* u, double* v, int n);
4

5 void Multiply(double scalar, double** A, double** B, int n);
6

7 int main(int argc, char* argv[])
8 {
9 int n = 2;

10 double* u = new double [n];
11 double* v = new double [n];
12 double** A = new double* [n];
13 double** B = new double* [n];
14 for (int i=0; i<n; i++)
15 {
16 A[i] = new double [n];
17 B[i] = new double [n];
18 }
19

20 u[0] = -8.7; u[1] = 3.2;
21 A[0][0] = 2.3; A[0][1] = -7.6;
22 A[1][0] = 1.3; A[1][1] = 45.3;
23 double s = 2.3, t = 4.8;
24

25 // vector multiplication
26 Multiply(s, u, v, n);
27

28 // matrix multiplication
29 Multiply(t, A, B, n);
30

31 delete[] u;
32 delete[] v;
33 for (int i=0; i<n; i++)
34 {
35 delete[] A[i];
36 delete[] B[i];
37 }
38 delete[] A;
39 delete[] B;
40

41 return 0;
42 }
43

44 void Multiply(double scalar, double* u, double* v, int n)
45 {
46 // v = scalar*u (scalar by vector)
47 for (int i=0; i<n; i++)
48 {
49 v[i] = scalar*u[i];
50 }
51 }
52

53 void Multiply(double scalar, double** A, double** B, int n)

78 5 Blocks, Functions and Reference Variables

54 {
55 // B = scalar*A (scalar by matrix)
56 for (int i=0; i<n; i++)
57 {
58 for (int j=0; j<n; j++)
59 {
60 B[i][j] = scalar*A[i][j];
61 }
62 }
63 }

Note that we can overload functions based only on the number and type of the ar-
guments and not on the return type. This means that we could not have vector multi-
ply function bool Multiply(double scalar, double* u, double*
v, int n) alongside the version which has a void return type. This is because
the compiler can infer the correct version of an overloaded function from the types
of its arguments from the context in which it is used. This is not the case with the
return type, where you may want to call a function which returns something, but
then to cast its output to another return type, or ignore its output completely.

5.6 Declaring Functions Without Prototypes

It is good practice to give the function signature prototypes before you write the im-
plementation. This is so that the function main, or any other function will recognise
the name and argument types of the new function. However, it is possible to skip the
writing of the function prototype by writing the function implementation before its
first use, as is shown in the code below.

�

1 #include <iostream>
2

3 double Square(double x)
4 {
5 return x*x;
6 }
7

8 int main(int argc, char* argv[])
9 {

10 std::cout << "Square of 2 = " << Square(2) << "\n";
11 return 0;
12 }

If prototypes are not given, then the function implementations must be ordered
in such a way that each implementation is seen by the compiler before its first use.
Note that if two functions are mutually recursive, that is, both functions call the
other function, then it will not be possible to order the functions in this way—and
so prototypes must be declared in this case.

5.7 Function Pointers 79

5.7 Function Pointers

Suppose we want to write a function to implement the solution of the nonlin-
ear equation f (x) = 0 using the Newton–Raphson technique, where f is a user-
specified function. We may want to call this function for solving nonlinear equa-
tions more than once during the execution of a given program, and for different
user-specified nonlinear functions. To achieve this, we need to specify the appro-
priate nonlinear function each time the function is called. This may be done, as
demonstrated in the code below, using function pointers.

In the code below, we specify two functions myFunction and myOther-
Function. In line 8, we declare a function pointer *p_function. This dec-
laration specifies that the function that this pointer refers to must: (i) accept one
(and only one) input argument which is a double precision floating point variable;
and (ii) return one double precision floating point variable. In line 10, we spec-
ify that p_function points at the function myFunction: calling the function
p_function in line 11 then has an identical effect to calling myFunction. In
lines 13 and 14, we demonstrate how to use p_function to subsequently call the
function myOtherFunction.

�

1 #include <iostream>
2

3 double myFunction(double x);
4 double myOtherFunction(double x);
5

6 int main(int argc, char* argv[])
7 {
8 double (*p_function)(double x);
9

10 p_function = &myFunction;
11 std::cout << p_function(2.0) << "\n";
12

13 p_function = &myOtherFunction;
14 std::cout << p_function(2.0) << "\n";
15

16 return 0;
17 }
18

19 double myFunction(double x)
20 {
21 return x*x;
22 }
23

24 double myOtherFunction(double x)
25 {
26 return x*x*x;
27 }

80 5 Blocks, Functions and Reference Variables

The Newton–Raphson method for solving nonlinear equations is defined in Prob-
lem 2.6 in the Exercises at the end of Chap. 2. This is implemented below for two
different user-specified functions through the use of function pointers. In lines 5–16,
we write a function to implement this algorithm. This function requires specifica-
tion of: (i) a function pointer to the nonlinear function; (ii) a function pointer to the
derivative of the nonlinear function; and (iii) an initial guess to the solution. Note
that the function as it stands does not check for divergence, so is unsafe to use in
some cases.

In lines 46 and 47, we call the Newton–Raphson solver to solve the equation√
x − 10 = 0 with initial guess x = 1: the nonlinear function Sqrt10, and the

derivative of the nonlinear function Sqrt10Prime are given in lines 19–22 and
26–29 of the code. Similarly, in lines 48 and 49 we call the Newton–Raphson solver
to solve the equation x3 − 10 = 0 with initial guess x = 1: the nonlinear function
Cube10, and the derivative of the nonlinear function Cube10Prime are given in
lines 32–35 and 39–42 of the code.

�

1 #include <cmath>
2 #include <iostream>
3

4 // Implementation of Newton-Raphson iteration
5 double SolveNewton(double (*pFunc)(double),
6 double (*pFuncPrime)(double),
7 double x)
8 {
9 double step;

10 do
11 {
12 step = (*pFunc)(x)/(*pFuncPrime)(x);
13 x -= step;
14 } while (fabs(step) > 1.0e-5);
15 return x;
16 }
17

18 // Function to calculate x that satisfies sqrt(x)=10
19 double Sqrt10(double x)
20 {
21 return sqrt(x) - 10.0;
22 }
23

24 // Derivative of function to calculate x that satisfies
25 // sqrt(x)=10
26 double Sqrt10Prime(double x)
27 {
28 return 1.0/(2.0*sqrt(x));
29 }
30

31 // Function to calculate x that satisfies x*x*x=10
32 double Cube10(double x)
33 {
34 return x*x*x - 10.0;
35 }

5.8 Recursive Functions 81

36

37 // Derivative of function to calculate x that satisfies
38 // x*x*x=10
39 double Cube10Prime(double x)
40 {
41 return 3.0*x*x;
42 }
43

44 int main(int argc, char* argv[])
45 {
46 std::cout << "Root sqrt(x)=10, with guess 1.0 is "
47 << SolveNewton(Sqrt10,Sqrt10Prime,1.0) << "\n";
48 std::cout << "Root x**3=10, with guess 1.0 is "
49 << SolveNewton(Cube10,Cube10Prime,1.0) << "\n";
50 return 0;
51 }

5.8 Recursive Functions

In some applications, we may wish to call a function from within the same function:
this is known as recursion, and is possible in C++. The simplest application of this
is calculation of the factorial of a positive integer n, denoted by fact(n), which
is defined by

fact(n)= n× fact(n-1), n> 1,

fact(n)= 1, n= 1.

Code to implement this recursive definition of the factorial function is given be-
low: we simply call the function CalculateFactorial from within the same
function as many times as required.

�

1 #include <iostream>
2 #include <cassert>
3

4 int CalculateFactorial(int n);
5

6 int main(int argc, char* argv[])
7 {
8 int n = 7;
9 std::cout << "The factorial of " << n

10 << " is " << CalculateFactorial(n) << "\n";
11

12 return 0;
13 }
14

15 int CalculateFactorial(int n)
16 {

82 5 Blocks, Functions and Reference Variables

17 assert (n > 0);
18 if (n == 1)
19 {
20 return 1;
21 }
22 else
23 {
24 // n>1
25 return n*CalculateFactorial(n-1);
26 }
27 }

5.9 Modules

Suppose we want to write a code to allow us to solve linear systems of the form
Ax = b, where A is a square, invertible matrix of size n, b is a specified vector of
size n, and x is a vector to be calculated of size n. It would be useful if we could
write all the functions required to solve this linear system and then allow these
functions to be called through an appropriate function—that is, we want to write a
function called SolveLinearSystem with the prototype shown below.

�

SolveLinearSystem(double** A, double* x, double* b, int n);

The function SolveLinearSystem has all the information required to solve the
linear system, and any functions required can be called from within this function.
This then allows us to solve any suitably defined linear system using just the single
line of code shown below.

�

SolveLinearSystem(A, x, b, n);

The function SolveLinearSystem, and all other functions associated with this
linear solver, are known as a module. In more concrete terms, a module is a col-
lection of functions that performs a given task. Every module has an interface. In
the example above, this was defined by the prototype of the function SolveLin-
earSystem, and may be thought of as a list of variables that contains: (i) those
that must be input to the module; and (ii) those that are output by the module.

Modules are very useful when sharing code. For example, if a colleague has writ-
ten code for solving linear systems as described above then it would be a very simple
task for another colleague to utilise this code. All that is required is an understanding
of the interface and what the purpose of the code is: there is no need to understand
the mathematical algorithm that determines how the linear system has been solved,
and the module may be thought of as a “black box”.

5.10 Tips: Code Documentation 83

5.10 Tips: Code Documentation

As you begin to write more programs, there is often a temptation to “just get on with
the coding” without paying specific attention to quality. After all “you generally
know where you are going and understand the program which you are writing”.
It is important to bear in mind, though, that your code will not always be as well
understood as it is now. You might come back to a given file in three years’ time,
because you need to correct it or to add some new functionality to it. Alternatively,
you may at some stage hand your programs over to someone else who has the job
of working out what you were doing.

Our tip in this chapter is that computer programs should be human-readable, as
well as machine-readable. Even the smallest portion of code may prove to be opaque
unless we include enough commentary to aid the human reader. Take for example
the function given below, which calculates the p-norm of a vector. Without com-
ments in the code, it would not be obvious what was happening, even though there
are only a few lines of code. A hint is given in the name of the function, Calcu-
lateNorm, but what is it meant to do? What is the significance of the arguments s
and p?

�

1 #include <cmath>
2 double CalculateNorm(double* x, int s, int p)
3 {
4 double a = 0.0;
5 for (int i=0; i<s; i++)
6 {
7 double temp = fabs(x[i]);
8 a += pow(temp, p);
9 }

10 return pow(a, 1.0/p);
11 }

In the code segment below, we give a description of the function immediately
before its definition. This description gives, in line 3, a means of mapping the math-
ematics of the function to its implementation. The rest of the description gives an
alternate place to find more information about the p-norm (lines 4–6) and an expla-
nation of some of the arguments as necessary. In the body of the function, the loop
has been commented to describe what its functional purpose is: it is about comput-
ing a sum over the elements of the vector. Finally, the return value is commented
with a few words of explanation.

Listing 5.2 A heavily commented version of CalculateNorm
�

1 #include <cmath>
2 // Function to calculate the p-norm of a vector:
3 // = [Sum_i (|x_i|**p)] ** (1/p)
4 // See "An Introduction to Numerical Analysis" by
5 // Endre Suli and David Mayers, page 60, for definition

84 5 Blocks, Functions and Reference Variables

�

6 // of the p-norm of a vector
7 // x is a pointer to the vector which is of size vecSize
8

9 double CalculateNorm(double* x, int vecSize, int p)
10 {
11 double sum = 0.0;
12 //Loop over elems x_i of x, incrementing sum by |x_i|**p
13 for (int i=0; i<vecSize; i++)
14 {
15 double temp = fabs(x[i]);
16 sum += pow(temp, p);
17 }
18 //Return p-th root of sum
19 return pow(sum, 1.0/p);
20 }

Note that documenting code is sometimes more of an art than a science. There
is a balance to be struck concerning the right level of documentation. Too many
comments can make the program less readable rather than more readable. Our tip
here is that you should describe what part of the problem the code is solving and,
perhaps, how it is solving that problem. Do not be tempted to describe the code in
overmuch detail. For example, the comment on the loop in line 12 of code above
could have read

�

12 // Loop over values of i going from 0 to vecSize-1

While this comment is accurate (describing the range of the loop variable vec-
Size), it does nothing to aid a programmer in their understanding of the code.

The formatting of the code documentation can also help readability. A simple
tip is that using empty lines to break code and comments into sections can make
the code look more readable. If you want to emphasise something you can simulate
underlining with hyphens or underscores, for example,

�

4 // Very important comment
5 // ----------------------

Alternatively, you can emphasise something by putting it in a box:
�

2 /**
3 ***
4 ** CalculateNorm(...) **
5 ** **
6 ** Function to calculate p-norm of vector **
7 ***
8 **/

5.11 Exercises 85

5.11 Exercises

In all exercises, we suggest that you use dynamic allocation of memory for vectors
and matrices as described in Sect. 4.2. Be sure that you are correctly de-allocating
memory when using dynamic allocation of memory, see the exercises at the end of
Chap. 4.

5.1 Write code that sends the address of an integer to a function that prints out the
value of the integer.

5.2 Write code that sends the address of an integer to a function that changes the
value of the integer.

5.3 Write a function that swaps the values of two double precision floating point
numbers, so that these changes are visible in the code that has called this function.
1. Write this function using pointers.
2. Write this function using references.

5.4 Write a function that can be used to calculate the mean and standard deviation of
an array of double precision floating point numbers. Note that the standard deviation
σ of a collection of numbers xj , j = 1,2, . . . ,N is given by

σ =
√∑N

j=1(xj − x̄)2

N − 1

where x̄ is the mean of the numbers.

5.5 Write a function Multiply that may be used to multiply two matrices given
the matrices and the size of both matrices. Use assertions to verify that the matrices
are of suitable sizes to be multiplied.

5.6 Overload the function Multiply written in the previous exercise so that it
may be used to multiply:
1. a vector and a matrix of given sizes;
2. a matrix and a vector of given sizes;
3. a scalar and a matrix of a given size; and
4. a matrix of a given size and a scalar.

5.7 The p-norm of a vector v of length n is given by

‖v‖p =
(

n∑
i=1

|vi |p
)1/p

where p is a positive integer. Extend the code in Listing 5.2 to calculate the p-norm
of a given vector, where p takes the default value 2.

86 5 Blocks, Functions and Reference Variables

5.8 The determinant of a square matrix may be defined recursively: see Sect. A.1.3.
Write a recursive function that may be used to calculate the determinant of a square
matrix of a given size. Check the accuracy of your code by comparison with the
known formulae for square matrices of size 2 and 3:

det

(
a00 a01
a10 a11

)
= a00a11 − a01a10,

det

⎛
⎝

a00 a01 a02
a10 a11 a12
a20 a21 a22

⎞
⎠ = a00 (a11a22 − a12a21) − a01 (a10a22 − a12a20)

+ a02 (a10a21 − a11a20) .

5.9 Write a module for solving the 3 × 3 linear system Au = b where A is nonsin-
gular.

5.10 Write a module for solving the n × n linear system Au = b using Gaussian
elimination with pivoting, where A is nonsingular. See Sect. A.2.1.3 for details of
this algorithm.

6An Introduction to Classes

One of the key features of the C++ programming language is that it is object-
oriented. Up until now we have largely ignored this feature, making only passing
reference to it in earlier chapters. For the remainder of this book, we focus on object-
orientation, allowing readers to utilise this feature in their C++ programs.

6.1 The Raison d’Être for Classes

At the end of Chap. 5, we introduced the concept of a module. We explained that
modules are useful for code reuse, and therefore allow rapid code development for
programs that require the functionality provided by the module, even if the pro-
grammer has no understanding of the operations that a module performs. This may
be highlighted by using the example of a module for solving linear systems that was
introduced in Chap. 5. Three advantages of having this module available are given
below.
• Linear algebra lies at the heart of numerical analysis, and so numerical analysts

use linear solvers in many programs that they write. A module allows them to
reuse this code rather than write new functionality for solving linear systems each
time they write a new program.

• There are many different linear algebra techniques for solving linear systems. It is
possible to include many different techniques in a module, and to specify which
technique is to be used as part of the interface to the module.

• Other scientists with little mathematical expertise may have to write programs
which require the solution of a linear system. A module allows them to do so
without learning the mathematical techniques that underpin linear algebra algo-
rithms.
Modules are clearly very useful when writing scientific computing programs.

But, as we now explain, the use of modules may cause problems.

J. Pitt-Francis, J. Whiteley, Guide to Scientific Computing in C++,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-4471-2736-9_6, © Springer-Verlag London Limited 2012

87

http://dx.doi.org/10.1007/978-1-4471-2736-9_6

88 6 An Introduction to Classes

6.1.1 Problems That May Arise When Using Modules

Suppose that the linear solver that we discussed in the previous section has been
written so that the solution of this linear system is calculated using the GMRES al-
gorithm.1 This technique for solving linear systems requires several instances of a
calculation of the scalar product between two vectors. Implementation of this tech-
nique would, therefore, probably include a function being written to calculate the
scalar product of two vectors of a given length. Use of this function would not be
restricted to users of the module for solving linear systems: another part of the code
may use this function to calculate, for example, the normal derivative of a function
of two or more variables. Suppose whoever was using the scalar product function to
calculate a normal derivative decided to change the inputs to the scalar product func-
tion. This would inadvertently cause the linear solver to stop functioning correctly.
The linear solver module could then not be treated as a “black box”.

Another drawback of using standard modules is the way in which data is stored.
There is only ever one copy of a particular module and one copy of any data asso-
ciated with it. If that data is changed for the module to fulfil a particular purpose,
then it will be changed for all future uses. Consider a linear solver which has had
its functionality extended so that it is able to deal with singular matrices. Such a
linear solver will need to have access to the null space (or kernel) of the singular
matrix or matrices in question. Suppose we use the extended linear solver to solve a
singular linear system. The linear system will then solve the singular system subject
to knowing and storing the null space of this system. If we were to subsequently use
the module to solve another nonsingular linear system, we would have to remember
to specify the null space as being empty or the linear solver would attempt to find
the solution of the nonsingular system subject to the previously specified null space.

In the next section, we explain how classes allow us to write code including all
the features of modules, but without the drawbacks identified above.

6.1.2 Abstraction, Encapsulation and Modularity Properties of
Classes

The shortcomings of modules, described in the previous section using the example
of a module for solving a linear system, could be overcome if we could write a
“module” that:
1. contains all the functions needed to solve the system;
2. does not allow these functions to be accessed by any other part of the program

except through the interface;
3. can not itself access any other part of the program; and
4. also contains all the data needed to solve the system.

1The Generalised Minimal RESidual technique—commonly known as GMRES—is an iterative
technique for solving linear systems. See, for example, Trefethen and Bau [4] for more details.

6.2 A First Example Simple Class: A Class of Books 89

This is possible through the use of classes, and the specifications described
above—that is, the compartmentalisation of all of the resources needed—are known
as the encapsulation feature of classes. The variables/data and functions associated
with a class are known as class members, and the functions more specifically as
methods. We are now in a position to describe some of the technical terms from
Sect. 1.1.1.

Classes allow modularity, which includes placing similar functionality in a few
files. Classes allow us to go further than this: access controls allow us to control
which resources are available outside of the class, and which are hidden from users.
Hiding parts of the code may—at first sight—seem to have the undesirable effect
of preventing a user from accessing the full functionality of the software. As we
shall see later in this chapter, this is certainly not the consequence: it actually has
the more desirable effect of preventing users from inadvertently corrupting data.
Furthermore, combining functionality in this way allows us to associate data with
the functionality.

The concept of abstraction is that the particulars of an idea should not be im-
portant. Classes allow us to hide the irrelevant details of functionality from users
who need not know about them. For example, a reader of this book does not need
to know how a compiler translates a C++ code into a machine readable executable
file, but only how to instruct the compiler to perform this task. Abstraction allows
emphasis to be placed on the qualities or properties that characterise the objects in
how they act and the type of information that they carry.

A further property of classes is inheritance which allows easy code reuse, exten-
sibility and polymorphism. Inheritance will be discussed in Chap. 7.

6.2 A First Example Simple Class: A Class of Books

The first simple class that we develop is a class of books.

6.2.1 Basic Features of Classes

Each book has the following attributes:
• an author;
• a title;
• a format;
• a price;
• a year of publication; and
• a publisher.

These attributes can be associated with each instance of a book by first saving the
file below as Book.hpp. As explained earlier, these attributes are known as class
members.

�

1 #include <string>
2

90 6 An Introduction to Classes

3 class Book
4 {
5 public:
6 std::string author, title, publisher, format;
7 int price; //Given in pence
8 int yearOfPublication;
9 }; //Note that the class ends with ;

The file above is known as the header file associated with the class: the extension
.hpp indicates that this file is a header file associated with a C++ program. At this
stage, it is sufficient to know that the word public that is used in line 5 of this
file allows us to access all variables associated with the class. We will give more
precise details on what are known as access privileges later in this chapter. Note
the semi-colon that is required after the closing curly bracket at the end of this file.
A common mistake made by novice programmers is to miss this semi-colon at the
end of the class definition.

The class of books may then be used as shown in the code below. Note that when
header files that we have written are included the names of these files are enclosed
within quotation marks, in contrast to the system header files such as iostream,
fstream and cmath that we have used earlier. The compiler does not distinguish
between included files with quotation marks and those with angle brackets, but a
common coding convention encourages programmers to use quotation marks and
angle brackets to make the distinction between local include files and those from
external libraries, respectively.

Listing 6.1 Using the class Book
�

1 #include <iostream>
2 #include "Book.hpp"
3

4 int main(int argc, char* argv[])
5 {
6 Book my_favourite_book;
7

8 my_favourite_book.author = "Lewis Carroll";
9 my_favourite_book.title =

10 "Alice’s adventures in Wonderland";
11 my_favourite_book.publisher = "Macmillan";
12 my_favourite_book.price = 199;
13 my_favourite_book.format = "hardback";
14 my_favourite_book.yearOfPublication = 1865;
15

16 std::cout << "Year of publication of "
17 << my_favourite_book.title << " is "
18 << my_favourite_book.yearOfPublication << "\n";
19 }

The class of books written here allows us to associate data with each instance of
the class. As such, we can think of this class as allowing us to define a new data

6.2 A First Example Simple Class: A Class of Books 91

type and line 6 of the code above as declaring an instance of that class, in this case
called my_favourite_book. The class members can all be accessed as shown in
lines 8–18 of the code above—that is, the string my_favourite_book.author
is the class member author associated with the instance of the class called
my_favourite_book.

6.2.2 Header Files

It doesn’t matter if we include header files such as iostream, string, etc. more
than once. But we should be very careful not to include files such as Book.hpp
in the form that it was written in the previous section more than once, as this can
cause problems. We will see later on in this book when we are working with several
different classes that it is easy to inadvertently include header files more than once.
To avoid this code being included twice, we adapt it so that the header file for a class
called ExampleClass is of the form shown below.

Initially EXAMPLECLASSHEADERDEF will not be defined. The “ifndef” in
line 1 is a contraction of if not defined. The first line of code below therefore in-
structs the computer to include the code between here and the #endif (line 18
of the code) only if the macro EXAMPLECLASSHEADERDEF is not defined. The
first time this code is included this macro will not be defined, and so all of the code
in the listing below will be read. Note that when this code is included, the first
task that is performed is to define the macro EXAMPLECLASSHEADERDEF (line 7
of the code). As EXAMPLECLASSHEADERDEF is now defined, if this code were
to be included a second time all code between the #ifndef EXAMPLECLASS-
HEADERDEF statement (line 1) and #endif (line 18) will now not be included.
We therefore see that the #ifndef, #define and #endif statements may be
used to ensure that the contents of a header file are not included more than once.

�

1 #ifndef EXAMPLECLASSHEADERDEF // only if macro
2 // EXAMPLECLASSHEADERDEF not
3 // defined execute lines of
4 // code until #endif
5 // statement
6

7 #define EXAMPLECLASSHEADERDEF // define the macro
8 // EXAMPLECLASSHEADERDEF.
9 // Ensures that this code is

10 // only compiled once, no
11 // matter how many times it
12 // is included
13 class ExampleClass
14 {
15 lines of code // body of header file
16 };
17

18 #endif // need one of these for every #ifndef statement

92 6 An Introduction to Classes

6.2.3 Setting and Accessing Variables

In the class of books we developed in the previous section, all class members
were variables, such as strings, double precision floating point numbers, or inte-
gers. Classes are, however, much more powerful than this: we will now show how
functions may also be defined as class members, known as class methods.

Suppose we want to check that the year of publication of an instance of the
class Book always takes a valid year. Assuming that no book in our catalogue was
published before the invention of the printing press, and has already been published
or will be in the near future, then we may write a function known as a member
method, called SetYearOfPublication, that allows us to set this variable and
check that the integer value for year of publication falls within a sensible range (after
the invention of the printing press and not too far in the future). As we are writing a
method that allows us to check that a valid year of publication is assigned, it seems
sensible to force the user of the class to use this method to set this variable. This may
be implemented by setting the member yearOfPublication to be a private
variable. Private variables may only be accessed by other class members: making
yearOfPublication a private variable therefore prevents us from accessing
this variable through code such as line 14 in Listing 6.1. However, it can be set
through the member method SetYearOfPublication, which we will make a
public member of this class. Access privileges—that is, the use of public and
private members—will be discussed more fully in Sect. 6.2.5.

Now that have made yearOfPublication a private member, we cannot di-
rectly access this member from outside the class. We therefore need to write a
public method that allows us to access this member—this class member will be
called GetYearOfPublication. We are also going to slightly modify the name
yearOfPublication to mYearOfPublication, where the prefix “m”—
with the “m” pertaining to “my”—reminds us that this variable is private to the
class. We now present code that implements this discussion. First we need a new
header file Book.hpp, given below.

In the code below, all members that follow public and precede private
(lines 9–12) may be accessed from outside the class. As mYearOfPublication
comes after private it is only accessible to class members. We will discuss access
privileges more fully in Sect. 6.2.5. Note the methods declared in lines 11 and 12 of
this code. We have specified that the method SetYearOfPublication accepts
an integer argument and returns no value, that is, it is a void function. The method
GetYearOfPublication returns an integer, but does not require any input ar-
guments as it can access all class members including mYearOfPublication.
The keyword const after the declaration of this method is a signal to the compiler
that we want to ensure that the instance of the class will remain constant through-
out the execution of the method. That is, the method GetYearOfPublication
should have changed nothing inside the class. We now need to tell the computer
what these methods do. This is given in the code in Listing 6.3, which should be
saved as Book.cpp. We have used an assert statement to check that the year of

6.2 A First Example Simple Class: A Class of Books 93

Listing 6.2 The file Book.hpp
�

1 #ifndef BOOKHEADERDEF
2 #define BOOKHEADERDEF
3

4 #include <string>
5

6 class Book
7 {
8 public:
9 std::string author, title, publisher, format;

10 int price; //Given in pence
11 void SetYearOfPublication(int year);
12 int GetYearOfPublication() const;
13 private:
14 int mYearOfPublication;
15 };
16

17 #endif

publication does fall within a sensible period when it is set. Note that the header file
required for assert statements should be included in this file.

Listing 6.3 The file Book.cpp
�

1 #include <cassert>
2 #include "Book.hpp"
3

4 void Book::SetYearOfPublication(int year)
5 {
6 assert ((year > 1440) && (year < 2020));
7 mYearOfPublication = year;
8 }
9

10 int Book::GetYearOfPublication() const
11 {
12 return mYearOfPublication;
13 }

In the code above, line 4 requires more explanation. In common with func-
tions introduced in Chap. 5, the void at the start of this line indicates that this
method does not return any variable. The remainder of this line indicates that this
method: (i) is associated with a class called Book; (ii) is called SetYearOf-
Publication; and (iii) requires one integer input argument which will be termed
year. Inside this method we first check that the input year is appropriate through
an assertion, before allocating it to the mYearOfPublication of a book. The
method GetYearOfPublication, which is written in lines 10–13, allows us

94 6 An Introduction to Classes

to access the variable mYearOfPublication from outside the class, without
allowing us to change this value to what may be an incorrect value.

Code that uses this updated class is given below, and should be saved as Use-
BookClass.cpp. Using access privileges to ensure that variables may only be set
through a class member that provides a check on the accuracy of data is very good
programming practice, and should be used whenever possible.

Listing 6.4 The file UseBookClass.cpp
�

1 #include <iostream>
2 #include "Book.hpp"
3

4 int main(int argc, char* argv[])
5 {
6 Book promotion_book;
7

8 promotion_book.author = "Iris Murdoch";
9 promotion_book.title = "The sea, the sea";

10 promotion_book.publisher = "Chatto & Windus";
11 promotion_book.price = 299;
12 promotion_book.format = "hardback";
13 promotion_book.SetYearOfPublication(1978);
14

15 std::cout << "Year of publication of "
16 << promotion_book.title << " is "
17 << promotion_book.GetYearOfPublication()
18 << "\n";
19 }

Note that in line 17 of the code above we need to acknowledge that the class
member GetYearOfPublication is a function or method by including empty
brackets after using this class method, even though no input arguments are required.

The files Book.hpp and Book.cpp together form valid C++ code for a class
of books. The code in Listing 6.4 above is a valid C++ use of this class. So far in
this book we have only needed to compile one file. Now, however, we need to think
a bit more about how to compile the multiple files that arise from using classes.

6.2.4 Compiling Multiple Files

In Sect. 1.3.3, we compiled a single C++ file into an executable program using the
single compilation step below.

�

g++ -Wall -o HelloWorld HelloWorld.cpp

What really happens in this process is that the C++ file is first compiled to an-
other file called HelloWorld.o, and known as an object file, which is a machine-
readable file. In a second step, the object file is compiled into the executable file and

6.2 A First Example Simple Class: A Class of Books 95

the intermediate object file is deleted. What we are actually doing when using the
compilation command above is to combine the two compilation steps given below.

�

g++ -Wall -c HelloWorld.cpp
g++ -Wall -o HelloWorld HelloWorld.o

The first of these commands creates an object file called HelloWorld.o from
the C++ file HelloWorld.cpp through the use of the -c compiler flag. The sec-
ond command creates an executable file HelloWorld from the object file Hel-
loWorld.o. Up until this point, we have used a one line compilation command,
allowing us to completely ignore the existence of object files. When compiling mul-
tiple files we do, however, need to be aware of the existence of these files.

Before we can compile the file UseBookClass.cpp in Listing 6.4, we first
need to compile the Book class to create an object file Book.o associated with
this class. This is done, as above, by using the -c option when compiling:

�

g++ -Wall -O -c Book.cpp

This produces an object file Book.o. We can now compile UseBookClass.cpp
into an object file and then link the two object files to make an executable. The two
compilation commands are now

�

g++ -Wall -O -c UseBookClass.cpp
g++ -Wall -lm -O -o UseBookClass UseBookClass.o Book.o

As in the above “HelloWorld” example, it is possible to skip one step in the com-
pilation process so that we do not have to explicitly produce the intermediate file
UseBookClass.o.

�

g++ -Wall -lm -O -o UseBookClass UseBookClass.cpp Book.o

The code may be run as before by typing
�

./UseBookClass

at the command line.

6.2.4.1 Using Makefiles to Compile Multiple Files
Suppose we have code that uses several classes stored in several files. We would
rather not compile all of these classes separately every time one file is modified
slightly. This may be avoided by the use of a Makefile—using this approach
only the necessary compilation is carried out. The following is a Makefile for code
UseClasses.cpp that uses two classes, Class1 and Class2.

96 6 An Introduction to Classes

�

1 Class1.o : Class1.cpp Class1.hpp
2 g++ -c -O Class1.cpp
3

4 Class2.o : Class2.cpp Class2.hpp
5 g++ -c -O Class2.cpp
6

7 UseClasses.o : UseClasses.cpp Class1.hpp Class2.hpp
8 g++ -c -O UseClasses.cpp
9

10 UseClasses : Class1.o Class2.o UseClasses.o
11 g++ -O -o UseClasses Class1.o Class2.o UseClasses.o

If the file above is saved as Makefile, then to generate an up-to-date executable
file UseClasses we simply type “make UseClasses” at the command line.

Using this approach only the necessary compilation will be carried out. Line 10
of this Makefile tells the compiler that the executable file UseClasses requires
three files: Class1.o, Class2.o and UseClasses.o. Line 11 gives the rule
for compiling the executable file from its dependencies. Line 1 tells the compiler
that the file Class1.o depends on the two files Class1.cpp and Class1.hpp.
Only if one or both of these files have been changed since the last time this class
has been compiled will this class be recompiled using the rule given on Line 2.
Similar remarks hold for the class Class2. Note that in line 7, the recompilation of
UseClasses.o depends not only on the relevant C++ file, but also on the classes’
header files—so that a change in either class interface will result in a recompilation
of the file which uses its functionality. Finally, having worked through all the steps
described, a new executable UseClasses will be created only if one or more of
the files listed on line 10 have changed as a consequence of this compilation process.

The compilation procedure is illustrated in Fig. 6.1. In this figure, the thin lines
with arrows represent some of the code dependencies described above that are en-
capsulated within the Makefile. Many of the integrated development environ-
ments described in Sect. 1.3.1 will automatically generate Makefiles.

6.2.5 Access Privileges

In Sect. 6.2.3, we briefly discussed access to class members. There are three degrees
of access to class members:
• private—these class members are only accessible to other class members, un-

less friend (which will be introduced in Sect. 6.3) is used;
• public—these class members are accessible to everyone;
• protected—these class members are accessible to other class members, to

derived classes (which will be introduced in Chap. 7), and to friends.
The reserved keywords private, public and protected may be used as

often as desired, with the default being private. For example in the class below,
member1 and member3 are private members, member2 and member4 are public
members, and member5 is a protected member.

6.2 A First Example Simple Class: A Class of Books 97

Fig. 6.1 The compilation process

�

1 #include <string>
2 class ExampleClass
3 {
4 double member1;
5 public:
6 std::string member2;
7 private:
8 int member3;
9 public:

10 int member4;
11 protected:
12 double member5;
13 };

6.2.6 Including Function Implementations in Header Files

We saw in Sect. 6.2.4 that it can be inconvenient to have to compile multiple classes.
When working on large projects that require the use of multiple classes it can be
difficult to keep track of the class members and their access privileges (stored in the
header file) and the implementations of the member functions (stored in the .cpp
file). If functions associated with a class require only a few lines of code then it may
be more convenient to include the implementation of these functions in the header
file. This may be done as shown below, where we implement the functions that are
members of our class Book in the header file for this class, thus combining the files
in Listings 6.2 and 6.3 into a single file Book.hpp.

98 6 An Introduction to Classes

Listing 6.5 The new file Book.hpp
�

1 #ifndef BOOKHEADERDEF
2 #define BOOKHEADERDEF
3

4 #include <string>
5 #include <cassert>
6

7 class Book
8 {
9 public:

10 std::string author, title, publisher, format;
11 int price; //Given in pence
12 void SetYearOfPublication(int year)
13 {
14 assert ((year > 1440) && (year < 2020));
15 mYearOfPublication = year;
16 }
17 int GetYearOfPublication() const
18 {
19 return mYearOfPublication;
20 }
21 private:
22 int mYearOfPublication;
23 };
24

25 #endif

6.2.7 Constructors and Destructors

Each time an object of the class Book is created the program calls a function that
allocates space in memory for all the variables used. This function is called a default
constructor and is automatically generated. This default constructor can be overrid-
den if desired—for example we may wish to set all the string variables in our class
of books to “unspecified” so that it will be clear when accessing this object
that these strings have not yet been properly assigned. An appropriate header file
for this class is shown below. Note that when overriding the default constructor this
function has the same name as the class, takes no arguments, has no return type and
must be a public member of the class.

�

1 #ifndef BOOKHEADERDEF
2 #define BOOKHEADERDEF
3

4 #include <string>
5

6 class Book
7 {
8 public:

6.2 A First Example Simple Class: A Class of Books 99

9 Book();
10 std::string author, title, publisher, format;
11 int price; //Given in pence
12 void SetYearOfPublication(int year);
13 int GetYearOfPublication() const;
14 private:
15 int mYearOfPublication;
16 };
17

18 #endif

The methods associated with this class are given in the file below.
�

1 #include "Book.hpp"
2 #include <cassert>
3

4 //This overrides the default constructor
5 Book::Book()
6 {
7 author = "unspecified";
8 title = "unspecified";
9 publisher = "unspecified";

10 format = "unspecified";
11 }
12

13 void Book::SetYearOfPublication(int year)
14 {
15 assert ((year > 1440) && (year < 2020));
16 mYearOfPublication = year;
17 }
18

19 int Book::GetYearOfPublication() const
20 {
21 return mYearOfPublication;
22 }

The code below demonstrates how to use the overridden default constructor.
�

1 #include <iostream>
2 #include "Book.hpp"
3

4 int main(int argc, char* argv[])
5 {
6 Book my_book;
7 std::cout << "The author is " << my_book.author << "\n";
8

9 return 0;
10 }

The code above will print “The author is unspecified”.

100 6 An Introduction to Classes

We will see in Chap. 10 that, if any memory management such as allocating
memory dynamically is required by a class, then it is essential to change the be-
haviour of the automatically generated default constructor: if not, the default con-
structor will not allocate any memory. We can change the behaviour of the automat-
ically generated default constructor either by overriding it with a default constructor
of our own (as in the example of Book, above) or by providing some other con-
structor (which we will discuss shortly). This is because the automatically generated
default constructor is only available if no other constructors have been provided by
the programmer.

Another constructor that is automatically generated is a copy constructor. This
constructor requires as input another instance of the class, and creates a copy of
this instance of the class. In common with default constructors, copy constructors
may also be overridden. Note that the argument to a copy constructor has to be
a reference to another instance of the class, rather than that object itself. This is
because, by default, all method arguments are by called by copy. Were we to miss
the fact that this constructor takes a reference argument, then we would need to use
a copy constructor in the call—the very machinery that we are defining here. It is
also a good idea to declare the argument to a copy constructor as const which
is an instruction to the compiler to ensure that the object argument otherBook
to the copy constructor in the code in Listing 6.6 will remain constant during this
operation. That is, the constructor will have no hidden side-effects on the instance
of the class that it is copying.

Furthermore, in addition to the default and copy constructors, we may write our
own customised constructor that takes any inputs that we feel are appropriate, and
we may write as many of these constructors as we like. For example, we may want
to specify a book’s title when creating an object. We now demonstrate how to write
a constructor such as this, and how to override a copy constructor. First, we need an
appropriate header file: one is shown in Listing 6.6. Line 10 of this header file de-
clares an overridden copy constructor, and line 11 explains that there will be a con-
structor that accepts a string as input. As we have provided a constructor ourselves
the automatically generated default constructor is not available: we may, however,
supply a default constructor ourselves.

The methods associated with this class are given in the file in Listing 6.8.
Lines 14–22 are the overridden copy constructor, where all class members are set to
be the same as the instance of the class that we wish to copy. Lines 25–28 represent
the specialised constructor that sets the title of the book to a specified string.

The code in Listing 6.7 first creates an instance of the class Book, called
good_read, and sets the class members associated with good_read. Line 15
demonstrates how to use the overridden copy constructor to create another instance
of the class Book, called another_book, that is initialised with class members
taking identical values to those of good_read. Line 17 uses the constructor that
sets the title when the instance of the class is declared: an instance of the class called
an_extra_book is declared, with title set to “The Magician’s nephew”.

Destructors are also automatically written, and free memory allocated for an ob-
ject when it goes out of scope. We will see later when writing classes of vectors
and matrices that there are situations—specifically where the constructor has per-

6.2 A First Example Simple Class: A Class of Books 101

Listing 6.6 The file Book.hpp
�

1 #ifndef BOOKHEADERDEF
2 #define BOOKHEADERDEF
3

4 #include <string>
5

6 class Book
7 {
8 public:
9 Book();

10 Book(const Book& otherBook);
11 Book(std::string bookTitle);
12 std::string author, title, publisher, format;
13 int price; //Given in pence
14 void SetYearOfPublication(int year);
15 int GetYearOfPublication() const;
16 private:
17 int mYearOfPublication;
18 };
19

20 #endif

Listing 6.7 Example code that uses the Book class
�

1 #include <iostream>
2 #include "Book.hpp"
3

4 int main(int argc, char* argv[])
5 {
6 Book good_read;
7

8 good_read.author = "C S Lewis";
9 good_read.title = "The silver chair";

10 good_read.publisher = "Geoffrey Bles";
11 good_read.price = 699;
12 good_read.format = "paperback";
13 good_read.SetYearOfPublication(1953);
14

15 Book another_book(good_read);
16

17 Book an_extra_book("The Magician’s nephew");
18

19 return 0;
20 }

102 6 An Introduction to Classes

Listing 6.8 The file Book.cpp
�

1 #include "Book.hpp"
2 #include <cassert>
3

4 //Overridden default constructor
5 Book::Book()
6 {
7 author = "unspecified";
8 title = "unspecified";
9 publisher = "unspecified";

10 format = "unspecified";
11 }
12

13 //Overridden copy constructor (mimics system version)
14 Book::Book(const Book& otherBook)
15 {
16 author = otherBook.author;
17 title = otherBook.title;
18 publisher = otherBook.publisher;
19 format = otherBook.format;
20 price = otherBook.price;
21 mYearOfPublication = otherBook.GetYearOfPublication();
22 }
23

24 //Specialised constructor
25 Book::Book(std::string bookTitle)
26 {
27 title = bookTitle;
28 }
29

30 void Book::SetYearOfPublication(int year)
31 {
32 assert ((year > 1440) && (year < 2020));
33 mYearOfPublication = year;
34 }
35

36 int Book::GetYearOfPublication() const
37 {
38 return mYearOfPublication;
39 }

formed dynamic allocation of memory—where the automatically generated destruc-
tor should be overridden. This allows us to adhere to the tip introduced in Sect. 4.3.3,
which advised programmers to ensure that any line of code where memory is dy-
namically allocated using new has a corresponding line where the memory is freed
up using delete.

6.3 The friend Keyword 103

6.2.8 Pointers to Classes

We may declare a pointer to an instance of a class as we show in the code below. In
line 6 of this code we declare a pointer, p_book_i_am_reading, to an instance
of the class Book described earlier in this chapter, and allocate memory for this
instance through the use of new. In line 8, we use *p_book_i_am_reading to
denote the contents of the memory whose address is stored by the pointer. By plac-
ing this in brackets, we may access the class members as shown in earlier sections
of this chapter. Line 9 is a more convenient way of accessing a class member asso-
ciated with a pointer to a class in which the forward arrow, ->, means “de-reference
and then access the member”.

�

1 #include <iostream>
2 #include "Book.hpp"
3

4 int main(int argc, char* argv[])
5 {
6 Book* p_book_i_am_reading = new Book;
7

8 (*p_book_i_am_reading).author = "Philip Pullman";
9 p_book_i_am_reading->title = "Lyra’s Oxford";

10

11 delete p_book_i_am_reading;
12 }

In the code above, note that we have followed the advice given in Sect. 4.3.3—
which we shall repeat many times in this book—to always write a delete state-
ment to match a new statement.

6.3 The friend Keyword

When developing a program, we may wish to access private members of a class
from outside the class. One way of doing this is to create a new public method that
accesses the private member in the same way as we did in Sect. 6.2.3. Another way
is to write a free function that is a friend of the class: such functions may access all
members of the class, including private variables. This is demonstrated in the class
that we write below. First, we write the header file.

�

1 #ifndef EXAMPLECLASSDEF
2 #define EXAMPLECLASSDEF
3

4 class ExampleClass
5 {
6 private:
7 double mMemberVariable1;
8 double mMemberVariable2;

104 6 An Introduction to Classes

9 public:
10 ExampleClass(double member1, double member2);
11 double GetMinimum() const;
12 friend double GetMaximum(const ExampleClass& egClass);
13 };
14

15 #endif

The constructor, member function and friend function are then implemented us-
ing the code below. Note that as the friend function GetMaximum is not a member
of the class, we do not include ExampleClass:: in line 25 of the code as we
would do when writing a method that is a member of the class.

�

1 #include "ExampleClass.hpp"
2

3 //Constructor to set private members
4 ExampleClass::ExampleClass(double member1, double member2)
5 {
6 mMemberVariable1 = member1;
7 mMemberVariable2 = member2;
8 }
9

10 //GetMinimum is a member method
11 double ExampleClass::GetMinimum() const
12 {
13 if (mMemberVariable1 < mMemberVariable2)
14 {
15 return mMemberVariable1;
16 }
17 else
18 {
19 // mMemberVariable1 >= mMemberVariable2
20 return mMemberVariable2;
21 }
22 }
23

24 //GetMaximum is a friend function
25 double GetMaximum(const ExampleClass& egClass)
26 {
27 if (egClass.mMemberVariable1 >
28 egClass.mMemberVariable2)
29 {
30 return egClass.mMemberVariable1;
31 }
32 else
33 {
34 // egClass.Var1 <= egClass.Var2
35 return egClass.mMemberVariable2;
36 }
37 }

6.4 A Second Example Class: A Class of Complex Numbers 105

Code that uses the friend function of the class above is shown below.

�

1 #include <iostream>
2 #include "ExampleClass.hpp"
3

4 int main(int argc, char* argv[])
5 {
6 ExampleClass example(2.0, 3.0);
7 std::cout << "Minimum value = " << example.GetMinimum()
8 << "\n";
9 std::cout << "Maximum value = " << GetMaximum(example)

10 << "\n";
11 return 0;
12 }

6.4 A Second Example Class: A Class of Complex Numbers

In the class of books that we have developed, all class members were quite simple,
being either variables—such as strings, double precision floating point numbers, or
integers—or straightforward methods. We now develop a class of complex numbers,
allowing some more advanced features of classes—such as operator overloading—
to be showcased through a scientific computing example.

A complex number has a real part and an imaginary part. A class of complex
numbers will therefore contain class members that represent both of these quanti-
ties. It seems sensible to override the default constructor to set both the real and
imaginary part of a complex number to zero in the absence of any specified value.
We would also like a constructor to be available that allows us to set the complex
number z = x + iy, where x and y are double precision floating point variables,
using statements of the form shown below.

�

1 double x = 4.0;
2 double y = 3.0;
3 ComplexNumber z(x, y);

In addition, we may also include class members that are methods that calculate both
the modulus and the argument of this complex number. A further method that may
be of use is raising the complex number to a specified power.

6.4.1 Operator Overloading

If we have declared a, b, c and d to be integer variables then we may easily relate
these variables through statements such as those below.

106 6 An Introduction to Classes

�

1 int a, b, c, d;
2 a = b;
3 c = -a;
4 d = a + b;

We would also like to write statements such as these if a, b, c and d were complex
numbers rather than integers. Before we can do this, we need to define: (i) what
the assignment operator (equals) means for complex numbers; (ii) what the unary2

minus operator means—i.e. what is meant by the expression “-a” if a is a com-
plex number; and (iii) what the binary3 addition operator means—that is, what a+b
means for complex numbers a and b. Defining these operators for classes is known
as operator overloading. We will explain how this is done in C++ below.

6.4.2 The Class of Complex Numbers

In light of the discussion above, we will write a class of complex numbers with the
following members.
• A double precision floating point variable mRealPart containing the real part

of the complex number.
• A double precision floating point variable mImaginaryPart containing the

imaginary part of the complex number.
• An overridden default constructor ComplexNumber() that initialises the real

part and the imaginary part to zero.
• A constructor ComplexNumber(double x, double y) that initialises

the real part to x and the imaginary part to y.
• A method CalculateModulus() that returns a double precision floating

point variable containing the modulus (or magnitude) of the complex number.
• A method CalculateArgument() that returns a double precision floating

point variable containing the argument (or phase) of the complex number.
• A method CalculatePower(double n) that returns the complex number

calculated when raising the original complex number to the power n.
• Overloading of the assignment operator.
• Overloading of the unary subtraction operator.
• Overloading of the binary addition and subtraction operators.
• Overloading of the output stream (<<) insertion operator which gives control of

the output format for complex numbers.
A suitable header file for this class is shown below. This should be saved as

ComplexNumber.hpp . We have made the data associated with each complex
number—i.e. the real part and the imaginary part—private members of this class to
prevent inadvertent corruption of these members. These members can, of course, be
accessed by the methods of the class.

2A unary operator has one input, hence -a is the unary minus operator applied to a.
3A binary operator has two inputs, hence a+b is the binary addition operator applied to a and b.

6.4 A Second Example Class: A Class of Complex Numbers 107

Listing 6.9 The file ComplexNumber.hpp
�

1 #ifndef COMPLEXNUMBERHEADERDEF
2 #define COMPLEXNUMBERHEADERDEF
3

4 #include <iostream>
5

6 class ComplexNumber
7 {
8 private:
9 double mRealPart;

10 double mImaginaryPart;
11 public:
12 ComplexNumber();
13 ComplexNumber(double x, double y);
14 double CalculateModulus() const;
15 double CalculateArgument() const;
16 ComplexNumber CalculatePower(double n) const;
17 ComplexNumber& operator=(const ComplexNumber& z);
18 ComplexNumber operator-() const;
19 ComplexNumber operator+(const ComplexNumber& z) const;
20 ComplexNumber operator-(const ComplexNumber& z) const;
21 friend std::ostream& operator<<(std::ostream& output,
22 const ComplexNumber& z);
23 };
24

25 #endif

Code for the class members that are methods is shown in Listing 6.10, and should
be saved as ComplexNumber.cpp.

In the code in Listing 6.10 we have written two constructors. The first of these
(lines 6–10) overrides the automatically generated default constructor, and initialises
both the real part and the imaginary part of the complex number to zero if no values
are specified. The second constructor (lines 13–17) accepts two double precision
floating point variables, sets the real part of the complex number to the first of these,
and the imaginary part of the complex number to the second of these. Readers who
have followed the discussion of constructors for the class of books will need no
more discussion on the implementation of these constructors.

We now turn our attention to the third method in the code below, the method for
calculating the modulus of a complex number in lines 21–25. As this method returns
the modulus of the complex number, which is a double precision floating point vari-
able, we begin line 21 with the word double to reflect this. This is then followed
by the text ComplexNumber::CalculateModulus() to indicate that: (i) it
is a member of the class ComplexNumber; and (ii) the method is called Calcu-
lateModulus. The text () indicates that no arguments are required. Recall that
member methods can access all class members, and so there is no need to specify
either the real part or the imaginary part of the complex number in the list of ar-

108 6 An Introduction to Classes

Listing 6.10 The file ComplexNumber.cpp
�

1 #include "ComplexNumber.hpp"
2 #include <cmath>
3

4 // Override default constructor
5 // Set real and imaginary parts to zero
6 ComplexNumber::ComplexNumber()
7 {
8 mRealPart = 0.0;
9 mImaginaryPart = 0.0;

10 }
11

12 // Constructor that sets complex number z=x+iy
13 ComplexNumber::ComplexNumber(double x, double y)
14 {
15 mRealPart = x;
16 mImaginaryPart = y;
17 }
18

19 // Method for computing the modulus of a
20 // complex number
21 double ComplexNumber::CalculateModulus() const
22 {
23 return sqrt(mRealPart*mRealPart+
24 mImaginaryPart*mImaginaryPart);
25 }
26

27 // Method for computing the argument of a
28 // complex number
29 double ComplexNumber::CalculateArgument() const
30 {
31 return atan2(mImaginaryPart, mRealPart);
32 }
33

34 // Method for raising complex number to the power n
35 // using De Moivre’s theorem - first complex
36 // number must be converted to polar form
37 ComplexNumber ComplexNumber::CalculatePower(double n) const
38 {
39 double modulus = CalculateModulus();
40 double argument = CalculateArgument();
41 double mod_of_result = pow(modulus, n);
42 double arg_of_result = argument*n;
43 double real_part = mod_of_result*cos(arg_of_result);
44 double imag_part = mod_of_result*sin(arg_of_result);
45 ComplexNumber z(real_part, imag_part);
46 return z;
47 }
48

49 // Overloading the = (assignment) operator
50 ComplexNumber& ComplexNumber::
51 operator=(const ComplexNumber& z)

6.4 A Second Example Class: A Class of Complex Numbers 109

�

52 {
53 mRealPart = z.mRealPart;
54 mImaginaryPart = z.mImaginaryPart;
55 return *this;
56 }
57

58 // Overloading the unary - operator
59 ComplexNumber ComplexNumber::operator-() const
60 {
61 ComplexNumber w;
62 w.mRealPart = -mRealPart;
63 w.mImaginaryPart = -mImaginaryPart;
64 return w;
65 }
66

67 // Overloading the binary + operator
68 ComplexNumber ComplexNumber::
69 operator+(const ComplexNumber& z) const
70 {
71 ComplexNumber w;
72 w.mRealPart = mRealPart + z.mRealPart;
73 w.mImaginaryPart = mImaginaryPart + z.mImaginaryPart;
74 return w;
75 }
76

77 // Overloading the binary - operator
78 ComplexNumber ComplexNumber::
79 operator-(const ComplexNumber& z) const
80 {
81 ComplexNumber w;
82 w.mRealPart = mRealPart - z.mRealPart;
83 w.mImaginaryPart = mImaginaryPart - z.mImaginaryPart;
84 return w;
85 }
86

87 // Overloading the insertion << operator
88 std::ostream& operator<<(std::ostream& output,
89 const ComplexNumber& z)
90 {
91 // Format as "(a + bi)" or as "(a - bi)"
92 output << "(" << z.mRealPart << " ";
93 if (z.mImaginaryPart >= 0.0)
94 {
95 output << "+ " << z.mImaginaryPart << "i)";
96 }
97 else
98 {
99 // z.mImaginaryPart < 0.0

100 // Replace + with minus sign
101 output << "- " << -z.mImaginaryPart << "i)";
102 }
103 }

110 6 An Introduction to Classes

guments. Line 21 then concludes with the reserved keyword const to ensure that
both the real part and the imaginary part of the complex number whose modulus
is being calculated are left unchanged by this method. A simple calculation is then
performed to return the modulus of this number. The fourth method in the code
above, lines 29–32, uses very similar ideas to calculate the argument of a complex
number. Readers should work through this method to ensure that they understand
exactly why the function has been written in this way.

Much of the discussion on the methods CalculateModulus and Calcu-
lateArgument applies to the fifth method in lines 37–47 of the code, namely
the function CalculatePower, which is used to return the nth power of a given
complex number. We perform this calculation by first writing the complex num-
ber in polar form, that is, z = reiθ . We may then write zn = rneinθ , which has real
part rn cosnθ , and imaginary part rn sinnθ . This method requires some different
features to the methods of this class already described, which we now explain. In
line 37, we specify that the type of variable returned is of type ComplexNum-
ber: that is, methods can be used to return an instance of a class as well as simpler
variable types such as double. This method also requires input of the exponent
to which we raise the complex number: this is specified by the “double n” in
brackets at the end of line 37. Inside the method, the first two lines of code calcu-
late the modulus and argument of the original number using the two class members
CalculateModulus and CalculateArgument—this demonstrates how to
call these methods from within the class. The next two lines then perform the calcu-
lations required on both the modulus and argument of the complex number to raise
it to the power of n. Having set both the real part and the imaginary part of the
resulting complex number, this complex number is then returned.

In lines 50–56, we overload the assignment operator. Note that the argument to
the assignment operator is a reference to another instance of the class, rather than
the object itself. This is because, by default, all method arguments are called by
copy, necessitating the overhead of the use of the copy constructor in making the
assignment. The use of the const keyword guarantees that the assignment operator
will not alter the contents of the object argument z. The remainder of the method for
assignment uses an entity called thiswhich does not appear to have been declared.
For the purpose of this book, the reader need only know that this is a pointer to
the complex number that is returned: it is the contents of this which is returned.

The unary subtraction operator is overloaded in lines 59–65. Line 59 explains
that: (i) the return type is a ComplexNumber; (ii) the method is a member of the
class ComplexNumber; (iii) defines the operator “−”; (iv) the function requires no
input arguments (as specified by the empty brackets); and (v) the original complex
number is left unchanged (through use of const). An instance of the class Com-
plexNumber, called w, is then declared in line 61, and the real part and imaginary
part of w are set to the negative of those of the original complex number in lines 62
and 63. Finally, the complex number w is returned.

The binary addition operator is defined in lines 68–75. We begin as usual in
lines 68–69 by specifying the return type, the class that the function is a member
of, the operator and the input argument. There is only one input argument which is

6.4 A Second Example Class: A Class of Complex Numbers 111

that to the right of the + operator—the class itself is the left operand. We declare an
instance of a complex number (line 71), perform the required addition (lines 72–73),
and then return the result of this addition (line 74). A similar function overloads the
binary subtraction operator in lines 78–85.

The final operator is defined in lines 88–103. This is the output stream (<<) in-
sertion operator. The syntax here is different: the operator is not a member method
of the class, but is an external function. This operator uses the friend keyword
introduced in Sect. 6.3. By using the friend keyword for the operator << in
line 21 of the header file for complex numbers, we are telling the computer that,
although this operator is not a class member, this operator may access all class
members—including private members. When this operator is defined in lines 88–
103 of the listing above, we see that we do not make it a class member through
ComplexNumber::. The function defining this operator takes an output stream
(such as std::cout or an output stream to a file) and inserts characters into it
using the complex number z.

We now demonstrate use of the class of complex numbers in the following code.
Recall from earlier that when member methods are called that require no arguments
we still need to acknowledge that they are functions by using empty brackets, for
example z1.CalculateModulus() in line 9 of the code below. Note that we
can declare an array of complex numbers: this is shown in line 25 of the listing
below where we create an array of complex numbers with two entries. In lines 26–
27, we set the first element of this array to the complex number z1, and the second
element of this array to the complex number z2. In lines 28 and 29, we show how
to access a friend function of an entry of an array, through printing the complex
number that is the second entry of the array of complex numbers to screen.

The files ComplexNumber.hpp and ComplexNumber.cpp given in List-
ings 6.9 and 6.10 may be downloaded from http://www.springer.com/978-1-4471-
2735-2.

�

1 #include "ComplexNumber.hpp"
2

3 int main(int argc, char* argv[])
4 {
5 ComplexNumber z1(4.0, 3.0);
6

7 std::cout << "z1 = " << z1 << "\n";
8 std::cout << "Modulus z1 = "
9 << z1.CalculateModulus() << "\n";

10 std::cout << "Argument z1 = "
11 << z1.CalculateArgument() << "\n";
12

13 ComplexNumber z2;
14 z2 = z1.CalculatePower(3);
15 std::cout << "z2 = z1*z1*z1 = " << z2 << "\n";
16

17 ComplexNumber z3;
18 z3 = -z2;
19 std::cout << "z3 = -z2 = " << z3 << "\n";

http://www.springer.com/978-1-4471-2735-2
http://www.springer.com/978-1-4471-2735-2

112 6 An Introduction to Classes

20

21 ComplexNumber z4;
22 z4 = z1 + z2;
23 std::cout << "z1 + z2 = " << z4 << "\n";
24

25 ComplexNumber zs[2];
26 zs[0] = z1;
27 zs[1] = z2;
28 std::cout << "Second element of zs = "
29 << zs[1] << "\n";
30

31 return 0;
32 }

6.5 Some Additional Remarks on Operator Overloading

In Sect. 6.4.1, we introduced the concept of operator overloading. This concept was
demonstrated in Sect. 6.4.2 using the example class of complex numbers. In this
example class, we demonstrated how to overload the assignment operator, and both
unary and binary addition and subtraction operators. Many more operators may be
overloaded, as will be demonstrated in later chapters. In Sect. 8.1, we show how
the square bracket operator may be overloaded. In Sect. 8.3.2, we show how the
“less than” operator can be overloaded: extending this to the “greater than” operator,
the “less than or equals to” operator, the “greater than or equals to” operator, the
“not equal to” operator, and the equality operator then follows the same pattern. In
Sect. 10.3.4, we demonstrate how to overload the round bracket operator.

6.6 Tips: Coding to a Standard

Many programming organisations and projects use coding standards in an attempt to
ensure that the software written is of an appropriate quality. A famous C++ coding
style called JSF (Joint Strike Fighter) was drafted for a European aviation project
and has now been adopted by many commercial software houses. Some organisa-
tions use automatic checks to ensure that their code complies to the standard (to
the extent that employees are reprimanded if their work falls short), while other
organisations use the standard as a guideline.

Coding standards are basic rules for programming. Some rules dictate how pro-
grams should be laid out (in terms of where comments, new lines and spaces should
appear). Other rules are about the naming of variables, classes, functions and meth-
ods. Still other rules outlaw various programming practises which, although legal
in the language, are considered dangerous (such as returning a pointer to locally
allocated memory). The reasons for adopting coding standards are various, but it is
generally believed that they promote code which is more reliable, portable, main-
tainable, readable and extensible.

6.6 Tips: Coding to a Standard 113

We believe that a few simple coding rules make programs much more readable
(and therefore more maintainable). For this reason, we have used a small set of cod-
ing standard rules throughout this book. We don’t always follow these rules rigidly,
especially when we present small fragments of programs, but once you are familiar
with some of the rules we are using then our presentation of code should make more
sense.

1. Code within blocks (such as those introduced in Sect. 5.1, as well as functions,
loops, branches of if statements, and other places which may have curly brack-
ets) is indented. The curly brackets ({ and }) are always used, even in single-
statement blocks (see Sect. 2.1.1), and they appear on a line of their own.

2. Lines of code which are too long to fit comfortably within the width of an editor
are split across multiple lines with a suitable indentation.

3. Names for variables and functions are meaningful (e.g., local_index or
numberOfNodes) but are not so verbose that they become too long and un-
wieldy.

4. Variables are declared close to where they are used, rather than at the beginning
of a function. This is so that the context is clear (see Sect. 5.1). Loop counter
variables are declared in the context of the loop, that is, we write

�

1 for (int i=0; i<10; i++)
2 {
3 std::cout << i << "\n";
4 }

rather than
�

1 int i;
2 for (i=0; i<10; i++)
3 {
4 std::cout << i << "\n";
5 }

5. Locally declared variable names have underscores (e.g., total_sum).
6. Where types are pointers or references the “*” or “&” character is written adja-

cent to the native type, with no space between, that is,
�

int* i;

rather than
�

int *i;

As explained in Sect. 4.1.2, a consequence of this rule is that each pointer vari-
able declaration should appear on its own line.

114 6 An Introduction to Classes

7. Pointer names begin with “p” (e.g., p_return_result or pLastResult).
One exception to this rule is when the pointer is used for an array of values
stored in dynamically allocated memory.

8. Function names are in camel-case (i.e., where capital letters begin each word)
and the first word is a verb, to indicate what it is that they do (e.g. GetSize()
or InitialisePreconditioner()). This applies to class methods as
well as to regular functions.

9. Names of arguments to functions (and class methods) are in also camel-case,
but they begin in lower-case (e.g., firstDimension). The same format is
also applied to member data of classes, but the following rule helps us to dis-
tinguish them.

10. Class data which have access controls are also in camel-case with “m” (for
“my”) to denote “private” or “protected” (e.g., mSize or mpQuadrat-
icMesh where the latter is a private pointer). Since it is advisable for member
data to be private, this naming convention allows us to distinguish, in the body
of a class method, between the method arguments and the class variables.

11. Class names are also in camel-case (as are function names), but they can be dis-
tinguished by the context (e.g., FiniteElementSolver or PopSinger).

12. There should be lots of descriptive comments as discussed in Sect. 5.10.

6.7 Exercises

In all of the exercises below, test your code using suitably chosen test cases.

6.1 The files ComplexNumber.hpp and ComplexNumber.cpp given in List-
ings 6.9 and 6.10 may be downloaded from http://www.springer.com/978-1-4471-
2735-2. Extend this class to include the following features.
1. Methods called GetRealPart and GetImaginaryPart that allow us to

access the corresponding private members. In the class of complex numbers, the
members representing the real and imaginary parts of the complex number—
called mRealPart and mImaginaryPart—are private members. These
members may be set through using a constructor, but there is no way to access
them.

2. Friend functions RealPart and ImaginaryPart so one may either write
z.GetImaginaryPart() or ImaginaryPart(z).

3. An overridden copy constructor.
4. A constructor that allows us to specify a real number in complex form through

a constructor that accepts one double precision floating point variable as input,
sets the real part of the complex number to the input variable, and the imaginary
part to zero.

5. A const method CalculateConjugate which returns the complex conju-
gate x - iy of a complex number x + iy.

6. A method SetConjugate which has a void return type and sets the complex
number x + iy to its complex conjugate x - iy.

http://www.springer.com/978-1-4471-2735-2
http://www.springer.com/978-1-4471-2735-2

6.7 Exercises 115

7. Write code to dynamically allocate memory for a 3 × 3 matrix of complex num-
bers. Extend this code to calculate the exponential of the matrix, where the ex-
ponential of a matrix A is given by

exp(A) =
∞∑

n=0

An

n
,

where, in practice, the infinite sum above is truncated at a suitably large value
of n. Having allocated the memory for this array dynamically what should you
now do? See Sect. 4.3.3 if you don’t know.

8. Test the class to ensure that special cases give sensible results. For example (0 +
0i)n should equal zero for most values of n, but any number raised by n = 0
should return 1.

6.2 Develop a class of 2 × 2 matrices of double precision floating point variables
that has the features listed below.
1. An overridden default constructor that initialises all entries of the matrix to zero.
2. An overridden copy constructor.
3. A constructor that specifies the four entries of the matrix and allocates these

entries appropriately.
4. A method (function) that returns the determinant of the matrix.
5. A method that returns the inverse of the matrix, if it exists.
6. Overloading of the assignment operator, allowing us to write code such as A =

B; for instances of the class A and B.
7. Overloading of the unary subtraction operator, allowing us to write code such as

A = -B; for instances of the class A and B.
8. Overloading of the binary addition and subtraction operators, allowing us to write

code such as A = B + C; or A = B - C; for instances of the class A, B
and C.

9. A method that multiplies a matrix by a specified double precision floating point
variable.

7Inheritance and Derived Classes

In Sect. 6.1.1, we explained how object-oriented programming allowed for a more
reliable programming paradigm than was possible using modules. One reason for
this, which we touched on briefly, is the availability of inheritance. Inheritance al-
lows us to extend the functionality of a class by introducing a new class, known as
the derived class, that contains all the features of the original class, known as the
base class.

7.1 Inheritance, Extensibility and Polymorphism

Perhaps the most important feature of object-oriented programming is inheritance.
This concept allows the functionality of classes to be built into a “family tree”. The
data, operation and functionality of a given class (the base class, sometimes called
the parent class) may be directly reused, extended and modified in another class
(the derived or child class). The operation of one base class can be inherited by
several derived classes.1 In turn, these derived classes may become the base classes
of further inheritance, giving rise to further generations.

Suppose we have written a class that allows us to solve linear systems. Suppose
further that we now want to write a class for solving linear systems that may be
used only when the matrix in the linear system is symmetric and positive definite,
thus allowing us to solve the system using the very effective conjugate gradient
technique discussed in Sect. A.2.3. Much of the functionality required—such as
specifying the vectors, matrix and tolerance, and providing a function for calculating
the scalar product between two vectors—will already be implemented in the class
that has been written to solve more general linear systems. Inheritance allows us
to write a new class for solving a special category of linear systems that uses—or

1A feature of C++ is that it also allows multiple inheritance, not available in other object-oriented
languages, where derived classes may inherit from more than one base class. This feature causes
some seasoned C++ programmers difficulty, and hence is beyond the scope of this book, although
we do briefly discuss this topic in Appendix B.

J. Pitt-Francis, J. Whiteley, Guide to Scientific Computing in C++,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-4471-2736-9_7, © Springer-Verlag London Limited 2012

117

http://dx.doi.org/10.1007/978-1-4471-2736-9_7

118 7 Inheritance and Derived Classes

inherits—all features of the class for solving general linear systems. If we wanted
to extend the functionality of the class that uses the conjugate gradient scheme to
include Successive Over–Relaxation (SOR),2 we simply inherit again so that the
SOR variant is a grandchild derived class of the original.

Inheritance gives rise to two important concepts first mentioned in Sect. 1.1.1:
extensibility and polymorphism. Extensibility is the idea, not just that the code can be
extended, but that it can be extended easily, and without changing any of the original
functional behaviour of the base class. Polymorphism is the ability to perform the
same operations on a wide variety of different types of objects. So, for example, the
Solve method of the generic linear solver outlined above will perform a certain
set of operations. This method of the base class is then redefined in a derived class
for symmetric, positive definite matrices, without changing its arguments. At run-
time, the program is able to decide which object it has and therefore which type of
Solve to run. This type of polymorphism is also known as dynamic polymorphism
or run-time polymorphism.

7.2 Example: A Class of E-books Derived from a Class of Books

We now demonstrate the basic features of inheritance through extending the class
of books developed in Sect. 6.2. Suppose the owner of a bookshop also runs a web-
site where she not only sells traditional (paper) books, but also electronic e-books.
The advantage of the e-book over a traditional book is that it does not need to be
parcelled up and sent through the mail. The e-book may be delivered by giving the
customer access to a private URL from which they may download it. The bookseller
may wish to update her computer system so that a URL attribute is added to each
instance of her e-books. She could do this by deriving a class Ebook from the class
Book given in Listings 6.6 and 6.8. The class Ebook will have the same members
as the class Book, but with two differences. The first difference is that the class
member format will be set to “electronic”. The second difference is that instances
of the class Ebookwill have an additional class member hiddenUrl that contains
the private URL. The header file for this class is given below.

As the class Ebook is derived from the class Book, we include the header file
for the class Book in the header file for the class Ebook below. Line 7 of this listing
specifies that the class Ebook is indeed derived from the class Book, and the word
“public” in this line has the effect that:
1. public members of Book are public members of Ebook;
2. protected members of Book are protected members of Ebook; and
3. private members of Book are hidden from Ebook, and so may not be used by

the derived class.
This is known as public inheritance. We will discuss access privileges for derived
classes in more detail in Sect. 7.3.

2SOR is an iterative technique for solving linear systems: see, for example, Iserles [1].

7.2 Example: A Class of E-books Derived from a Class of Books 119

Listing 7.1 The file Ebook.hpp
�

1 #ifndef EBOOKHEADERDEF
2 #define EBOOKHEADERDEF
3

4 #include <string>
5 #include "Book.hpp"
6

7 class Ebook: public Book
8 {
9 public:

10 Ebook();
11 std::string hiddenUrl;
12 };
13

14 #endif

Based on the discussion above, all public and protected members of the class
Book defined in Listing 6.6 are available to instances of the class Ebook. This has
the possibly unintended effect that the member mYearOfPublication is not
directly available to the derived class Ebook, as this member is private and there-
fore not available to the derived class. This member is, however still available in-
directly through the public methods of the base class SetYearOfPublication
and GetYearOfPublication: as these members are public they are available to
the derived class, and can be used to access the member mYearOfPublication.
The other difference between the derived class and the parent class is that we have
declared two additional members in the listing above: an overridden default con-
structor, and a string member representing the hidden URL.

The overridden default constructor is given below, where the format is set to
“electronic” as required. Note the syntax for overridden default constructors be-
low: this allows the default constructor for the base class Book to be called first,
setting the author, the title, and the publisher to “unspecified”. The format is
then set to “electronic” inside the overridden default constructor for the derived
class.

�

1 #include "Ebook.hpp"
2

3 Ebook::Ebook() : Book()
4 {
5 format = "electronic";
6 }

Example code using the class Ebook is given below. Note that the mem-
ber format of an instance of the class Ebook is automatically set to elec-
tronic.

120 7 Inheritance and Derived Classes

�

1 #include <iostream>
2 #include "Ebook.hpp"
3

4 int main(int argc, char* argv[])
5 {
6 Ebook holiday_reading;
7 holiday_reading.title = "The skull beneath the skin";
8 holiday_reading.author = "P D James";
9 std::cout << "The author is " << holiday_reading.author

10 << "\n";
11 std::cout << "The title is " << holiday_reading.title
12 << "\n";
13 std::cout << "The format is " << holiday_reading.format
14 << "\n";
15

16 holiday_reading.SetYearOfPublication(1982);
17 std::cout << "Year of publication is "
18 << holiday_reading.GetYearOfPublication()
19 << "\n";
20

21 holiday_reading.hiddenUrl =
22 "http://ebook.example.com/example-book";
23 std::cout << "The URL is "
24 << holiday_reading.hiddenUrl << "\n";
25

26 return 0;
27 }

Figure 7.1 shows, in schematic form, a representation of how the class Ebook
relates to its parent class Book. This representation is given in the Unified Modelling
Language (UML) format where each class is shown as a box. Space inside each box
is divided into three components: the class name, a list of the data contained in the
class and a list of the class methods. A + sign signifies data and methods which
are public. Private data or methods (mYearOfPublication in this case) carry a
− sign, while protected members would be given a # sign.

The arrow between the boxes shows the child–parent inheritance relationship.
The reason for the repetition of “+ Book()” in the base class is to show that Book
has three different constructors: the default constructor, the copy constructor and a
specialised Book constructor for setting the title attribute. These three construc-
tors were introduced in Sect. 6.2.7. Ebook has only one constructor which is the
overridden default (no argument) constructor given above which sets the format
attribute.

7.3 Access Privileges for Derived Classes

When developing a class, we specify all class members as being public, protected
or private members. When a class is derived from this base class, we need to know
what access privileges the members of the base class have in the derived class. In

7.4 Classes Derived from Derived Classes 121

Fig. 7.1 An inheritance
graph, showing that Ebook is
derived from the Book base
class

Table 7.1 Access privileges
for derived classes Access privilege

in base class
Type of inheritance

Public Protected Private

Public Public Protected Private

Protected Protected Protected Private

Private Hidden Hidden Hidden

the class Ebook that we derived from the class Book in Sect. 7.2, we used pub-
lic inheritance in line 7 of Listing 7.1. There are two other types of inheritance:
protected inheritance; and private inheritance. These three different types of inheri-
tance determine the access privileges of the base class members in the derived class.
In Table 7.1, we state these access privileges.

7.4 Classes Derived from Derived Classes

We may derive classes from classes that are themselves derived classes, as dis-
cussed in Sect. 7.1. If Class2 is derived from Class1, we may derive a new
class Class3 from Class2 in exactly the same way as in Sect. 7.2, as shown in
the header file for Class3 shown below.

122 7 Inheritance and Derived Classes

�

1 #ifndef CLASS3DEF
2 #define CLASS3DEF
3

4 #include "Class2.hpp"
5

6 class Class3: public Class2
7 {
8 public:
9 double newMember;

10 };
11

12 #endif

7.5 Run-Time Polymorphism

Polymorphism may be used when a number of classes are derived from the base
class, and for some of these derived classes we want to override one—or more—of
the methods of the base class. Suppose we have developed a class of guests who
stay at a hotel. This class will include members such as name, room type, arrival
date, number of nights booked, and a member method that computes the total bill. It
is likely that the hotel has negotiated special nightly rates for individuals from par-
ticular organisations. To reflect this, the method that computes the total bill must act
differently on guests from these organisations. This may be incorporated into soft-
ware in a very elegant manner through the use of virtual methods where the method
does different things for different derived classes. This is implemented by the use of
the virtual keyword, shown in the header file for the class of hotel guests shown
below. The virtual keyword is a signal to the compiler that a method has the
potential to be overridden by a derived class.

�

1 #ifndef GUESTDEF
2 #define GUESTDEF
3

4 #include <string>
5

6 class Guest
7 {
8 public:
9 std::string name, roomType, arrivalDate;

10 int numberOfNights;
11 double telephoneBill;
12 virtual double CalculateBill();
13 };
14

15 #endif

7.5 Run-Time Polymorphism 123

The implementation of the method CalculateBill is given in the listing be-
low, where the total bill is given by multiplying the number of nights that a guest
stayed in the hotel by a nightly rate of £50, and adding the telephone bill to this
figure. Even though this method is a virtual method, it is written in exactly the same
way as if it were not declared as virtual.

�

1 #include "Guest.hpp"
2

3 double Guest::CalculateBill()
4 {
5 return telephoneBill + ((double)(numberOfNights))*50.0;
6 }

Suppose now that the hotel have negotiated a deal with a company that reduces
the room rate to £45 for the first night that a guest stays, and £40 for subsequent
nights, and offers free telephone calls. This may be implemented by deriving a class
SpecialGuest from the class Guest as shown below.

�

1 #ifndef SPECIALGUESTDEF
2 #define SPECIALGUESTDEF
3

4 #include "Guest.hpp"
5

6 class SpecialGuest: public Guest
7 {
8 public:
9 double CalculateBill();

10 };
11

12 #endif

The method CalculateBill for this derived class is then implemented using
the code below.

�

1 #include "SpecialGuest.hpp"
2

3 double SpecialGuest::CalculateBill()
4 {
5 return 45.0 + ((double)(numberOfNights-1))*40.0;
6 }

Note that declaring the member method CalculateBill as virtual in the class
Guest does not require that the method must be overridden (redefined) in derived
classes: it simply gives us the option to override it.

The real power of run-time polymorphism can be seen when we use only pointers
to the base class in a family tree of objects. It might not be obvious what the exact
type of each object in our program is, but the run-time system is able to find out. In

124 7 Inheritance and Derived Classes

the following code, there are three pointers to Guest objects, but one of them is in
actuality a SpecialGuest and therefore has a reduced bill. One might imagine a
larger-scale program running over an array of Guest pointers—representing those
guests who are checking out—each of which has their own mechanism for calcu-
lating the bill. The programmer does not need to be aware which of these Guest
objects might be actually be a SpecialGuest.3

�

1 #include <iostream>
2 #include "Guest.hpp"
3 #include "SpecialGuest.hpp"
4

5 int main(int argc, char* argv[])
6 {
7 Guest* p_gu1 = new Guest;
8 Guest* p_gu2 = new Guest;
9 Guest* p_gu3 = new SpecialGuest;

10

11 //Set the three guests identically
12 p_gu1->numberOfNights = 3;
13 p_gu1->telephoneBill = 0.00;
14 p_gu2->numberOfNights = 3;
15 p_gu2->telephoneBill = 0.00;
16 p_gu3->numberOfNights = 3;
17 p_gu3->telephoneBill = 0.00;
18

19 std::cout << "Bill for Guest 1 = "
20 << p_gu1->CalculateBill() << "\n";
21 std::cout << "Bill for Guest 2 = "
22 << p_gu2->CalculateBill() << "\n";
23 std::cout << "Smaller bill for Guest 3 = "
24 << p_gu3->CalculateBill() << "\n";
25 delete p_gu1;
26 delete p_gu2;
27 delete p_gu3;
28 return 0;
29 }

7.6 The Abstract Class Pattern

Suppose we want to write an object-oriented program for calculating the numerical
solution of initial value ordinary differential equations of the form

dy

dt
= f (t, y), y(T0) = Y0,

3The advanced programmer can test if a Guest is a SpecialGuest using a feature called
dynamic casting.

7.6 The Abstract Class Pattern 125

where f (t, y) is a given function, and T0, Y0 are given values. Many methods exist
for calculating the numerical solution of equations such as these, for example, the
forward Euler method, Heun’s method, various Runge–Kutta methods, and various
multistep methods. One way of implementing these numerical methods would be to
write a class called AbstractOdeSolver that has members that would be used
by all of these numerical methods, such as variables representing the stepsize and
initial conditions, a method that represents the function f (t, y) on the right-hand
side of the equation above, and a virtual method SolveEquation for implement-
ing one of the numerical techniques described above. We would then implement
each of the numerical methods using a class derived from AbstractOdeSolver,
and overriding the virtual function SolveEquation. The derived classes would
then contain members that allow a specific numerical algorithm to be implemented,
as well as the members of the base class AbstractOdeSolver that would be
required by all of the numerical solvers.

Using the class structure described above, the base class AbstractOde-
Solver would not actually include a numerical method for calculating a numeri-
cal solution of a differential equation, and so we would not want to ever create an
instance of this class. We can automatically enforce this by making Abstract-
OdeSolver an abstract class. This is implemented by setting the virtual functions
SolveEquation and RightHandSide to be pure virtual functions as shown in
lines 15 and 16 of the listing for AbstractOdeSolver.hpp below. We indicate
that these functions are pure virtual functions by completing the declaration of these
members with “= 0” as shown in the listing below. Should we mistakenly attempt

Listing 7.2 The file AbstractOdeSolver.hpp
�

1 #ifndef ABSTRACTODESOLVERDEF
2 #define ABSTRACTODESOLVERDEF
3

4 class AbstractOdeSolver
5 {
6 private:
7 double stepSize;
8 double initialTime;
9 double finalTime;

10 double initialValue;
11 public:
12 void SetStepSize(double h);
13 void SetTimeInterval(double t0, double t1);
14 void SetInitialValue(double y0);
15 virtual double RightHandSide(double y, double t) = 0;
16 virtual double SolveEquation() = 0;
17 };
18

19 #endif

126 7 Inheritance and Derived Classes

to create an instance of the class AbstractOdeSolver we would get a compila-
tion error. An investigation into pure virtual functions is made in Exercise 7.2.

A class is an abstract class if it contains one or more pure virtual methods. We
do not discuss implementation of the class AbstractOdeSolver or the derived
classes further here: these classes are developed in the exercises at the end of this
chapter.

7.7 Tips: Using a Debugger

In Sect. 1.7, we gave a few tips about how to debug your code using simple tech-
niques such as printing information out to the screen, and we also promised to give
a little more information on using a debugger to inspect your code. There is a wide-
range of open source and commercial tools to support you, should you wish to do
this.

The easiest debuggers to use are those which are integrated with your develop-
ment environment (such as Visual Studio or Eclipse). These integrated debuggers
allow you to set breakpoints (places where you wish to temporarily pause execu-
tion) by clicking and selecting individual lines of code in your editing window. In
the case of Eclipse, the debugging options basically provide a point and click front-
end interface on top of a less user-friendly text-based debugger such as gdb.

The next level of sophistication is a graphical standalone debugger. Many of
those available are actually a front-end to a text-based debugger, whereas some, such
as ups are completely self-contained debuggers. A popular open source graphical
front-end debugger is dddwhich is a graphical interface to gdb, although it can also
interface with a range of low-level debugging tools for a variety of programming
languages. There are many other graphical front-end debuggers available such as
KDbg and Xxgdb.

The lowest level of sophistication is the text-based debugger. The most widely
used of these is the open source GNU debugger gdb, but many commercial com-
pilers offer their own debugging environments.

All the debugging tools mentioned will allow you to walk through the code line
by line, function call by function call, or to the next break point. If your program
aborts with a segmentation fault, then the debugger will stop at the place where the
fault happened, allowing you to see the line which caused the error. At any stage
in execution, you will be able to inspect the values of the program variables and
classes. You will also be able to inspect the back-trace (or stack) which shows the
function calling sequence which led from the main function to a particular line of
code.

Our advice is to debug your code with a graphical front-end to gdb, such as the
popular ddd. Such tools are easy to download and install. The fact that they have
a graphical interface with a built-in help system will allow you to rapidly see what
the capabilities are. We also need to stress at this point that debuggers do not cope
well with optimised code. Before you load the program into the debugger, you must
remember to first compile your code with the “-g” flag (see Sect. 1.3.3).

7.8 Exercises 127

7.8 Exercises

7.1 In this question, we will develop classes to describe the students at a university.
1. Write a class of students at the university that has the following public members:

• a string for the student’s name;
• a double precision floating point variable that stores the library fines owed by

the student;
• a double precision floating point variable that stores the tuition fees owed by

the student;
• a method that returns the total money owed by the student, that is, the sum of

the library fines and tuition fees associated with a given student;
• a few constructors that take different arguments.

2. The library fines owed by the students must be a nonnegative number. Enforce
this by making a student’s library fines a private member of the class. Write one
method that allows the user to set this variable only to nonnegative values, and
another method that can be used to access this private variable. Both methods
should be public members of the class.

3. Students at the university are either graduate students or undergraduate students.
All undergraduate students are full-time students. Graduate students may be full-
time students or part-time students. Derive a class of graduate students from
the class of students that you have already written with an additional member
variable that stores whether the student is full-time or part-time.

4. Graduate students do not pay tuition fees. Use polymorphism to write a method
that calculates the total money owed by a graduate student. This will require the
method for calculating the total money owed to be a virtual function of the parent
class.

5. Ph.D. students are a special class of graduate students who do not pay library
fines. Derive a class of Ph.D. students from the class of graduate students. Write
a method that calculates the total money owed by a Ph.D. student.

7.2 This exercise is an investigation into proper use of the virtual keyword and
into safe ways of making abstract classes.

The following program presents a small hierarchy of classes using the abstract
class pattern described in Sect. 7.6. There is an abstract class AbstractPerson,
which is intended never to be instantiated, and two derived classes, Mother and
Daughter. The code in the main function demonstrates the power of polymorphic
inheritance. It shows that it is possible to have a variety of objects of the same family
stored as pointers to a generic abstract type, each of which could be a different
concrete class. The AbstractPerson class promises a Print method, but it is
only at run-time that the system inspects the class pointed to by p_mother and
works out which Print method to invoke.

�

1 #include <iostream>
2

3 class AbstractPerson

128 7 Inheritance and Derived Classes

4 {
5 public:
6 virtual void Print(){std::cerr<<"Never instantiate\n";}
7 };
8

9 class Mother : public AbstractPerson
10 {
11 public:
12 virtual void Print(){std::cout<<"Mother\n";}
13 };
14

15 class Daughter : public Mother
16 {
17 public:
18 void Print(){std::cout<<"Daughter\n";}
19 };
20

21 int main(int argc, char* argv[])
22 {
23 AbstractPerson* p_mother = new Mother;
24 AbstractPerson* p_daughter = new Daughter;
25 p_mother->Print();
26 p_daughter->Print();
27 delete p_mother;
28 delete p_daughter;
29 }

1. Copy, save, compile and run the above program. The output from the Print
method calls in lines 25 and 26 ought to be:

�

1 Mother
2 Daughter

2. Investigate what happens if you remove the public keyword from the inheri-
tance declaration of either derived class (lines 9 and 15). This will make the base
class inaccessible from the derived class.

3. Investigate what happens if you remove either of the virtual keywords in
lines 6 and 12. Also investigate adding the virtual keyword on line 18. How
does the output change after each of these changes?

4. What happens if you use the code fragment below to instantiate an instance of
the abstract class in the main function?

�

29 AbstractPerson* p_abstract = new AbstractPerson;
30 p_abstract->Print();
31 delete p_abstract;

7.8 Exercises 129

5. The preferred method of making an abstract class with a pure virtual method (so
that it cannot be instantiated) is to give no implementation of that method in the
class. This is done by replacing line 6 with the rather strange syntax which was
introduced in the AbstractOdeSolver of Sect. 7.6:

�

5 public:
6 virtual void Print() = 0;

6. After making the Print method of AbstractPerson pure virtual as above,
repeat the exercise in part 3 of removing the virtual keywords in lines 6 and 12.

7. Also after making the method AbstractPerson::Print() pure virtual as
above, repeat the exercise in part 4 of attempting to instantiate an instance of the
abstract class.

7.3 In Sect. 7.6, we discussed how abstract classes could be used to write a library
for calculating the numerical solution of initial value ordinary differential equations,
i.e. ordinary differential equations of the form

dy

dt
= f (t, y),

for some user specified function f (t, y), where y = Y0 at t = T0 for an initial value
Y0 at some initial time T0. We want to calculate a numerical solution in the time in-
terval T0 < t < T1 where T1 is the final time. To solve this equation numerically, we
require the user to specify an integration step size, which we denote by h. A large va-
riety of numerical methods exist for solving equations such as these and in Sect. 7.6,
we explained that, as these methods all required very similar inputs, they could be
coded very effectively using an abstract class pattern. We will base the library de-
veloped in this exercise on the abstract class in Listing 7.2: you should save this
file, and ensure that you understand how the class members relate to the discussion
above.

In this exercise, we will develop the library to allow you to solve initial value
ordinary differential equations using two methods: the forward Euler method; and a
Runge–Kutta method. Using a step size h, we define the points ti , i = 0,1,2, . . . ,N

by

ti = T0 + ih,

where h is chosen so that tN = T1. The numerical solution at these points is de-
noted by yi , i = 0,1,2, . . . ,N . These values of yi are determined by the numerical
technique chosen.
• For the forward Euler method, we set y0 = Y0. For i = 1,2, . . . ,N , yi is given by

yi = yi−1 + hf (ti−1, yi−1).

130 7 Inheritance and Derived Classes

• For the fourth order Runge–Kutta method, we set y0 = Y0. For i = 1,2, . . . ,N ,
we calculate yi using the following formulae:

k1 = hf (ti−1, yi−1),

k2 = hf

(
ti−1 + 1

2
h,yi−1 + 1

2
k1

)
,

k3 = hf

(
ti−1 + 1

2
h,yi−1 + 1

2
k2

)
,

k4 = hf (ti−1 + h,yi−1 + k3),

yi = yi−1 + 1

6
(k1 + 2k2 + 2k3 + k4) .

More details on numerical methods for initial value problems may be found in
Kreyszig [2].
1. Write the methods associated with the class AbstractOdeSolver and save

these as the file AbstractOdeSolver.cpp. Note that you do not have to
write the pure virtual functions, as the “= 0” when they are declared in the file
AbstractOdeSolver.hpp means that these are already written.

2. Derive a class called FowardEulerSolver that allows the user to specify
the function RightHandSide, and contains a method SolveEquation that
uses the forward Euler method to calculate the values of yi as described above,
and writes the values of ti and yi to file. You may want to refer back to Sect. 5.7
to remind yourself how to allow a user to specify a function.

3. Test the class FowardEulerSolver using the initial value ordinary equation

dy

dt
= 1 + t,

for the time interval 0 < t < 1, and with initial condition y = 2 at t = 0. This
equation has solution y = (t2 + 2t + 4)/2. Investigate how the choice of step
size affects the accuracy of the solution.

4. Repeat the two sub-parts above using the fourth order Runge–Kutta method to
calculate the values of yi .

8Templates

If we want to write a function that returns the larger of two numbers, and we want
this function to be used for both integer variables and double precision floating point
variables, then we could use function overloading and write two functions: one for
integer variables and the other for double precision floating point variables. Both of
these functions would require only a few lines of code, and it would not be difficult
to maintain both functions. For larger functions maintaining more than one function
to do the same operations may be problematic. This may be avoided by the use of
templates, a feature of the C++ language that allows very general code to be written.

We begin this chapter by discussing templates and the flexibility that they per-
mit. One library associated with C++ is the Standard Template Library (STL): we
conclude this chapter by giving a brief survey of this library.

8.1 Templates to Control Dimensions and Verify Sizes

Many scientific computing applications are underpinned by vectors and matrices.
We have seen earlier that these are represented in C++ by arrays. Under normal
circumstances there is no check, when we attempt to access elements of an array,
that the index is a valid index. For example, in the code fragment below we attempt
to access the element with index 7 when the array only has 5 elements. Although
this is clearly an error, it may not trigger a compiler or run-time error. The most
likely outcome when code including these lines is executed is a segmentation fault
or an incorrect answer.

�

1 double A[5];
2 A[7] = 5.0;

If this fragment is part of a large program, it could be difficult to locate this error.
It would be therefore be useful if we could use arrays with an additional feature that
a check for validity of the index is performed each time an element of the array is

J. Pitt-Francis, J. Whiteley, Guide to Scientific Computing in C++,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-4471-2736-9_8, © Springer-Verlag London Limited 2012

131

http://dx.doi.org/10.1007/978-1-4471-2736-9_8

132 8 Templates

accessed. This may be achieved using the class shown below, which is referred to as
a templated class.

Listing 8.1 DoubleVector.hpp
�

1 #include <cassert>
2

3 template<unsigned int DIM> class DoubleVector
4 {
5 private:
6 double mData[DIM];
7

8 public:
9 double& operator[](int index) // overloading the []

10 // operator
11 {
12 assert(index < DIM);
13 assert(index > -1);
14 return(mData[index]);
15 }
16 };

The class in the listing above allows us to declare instances of DoubleVector,
specifying the length of the array. The entries of the array are private members of this
class and so can’t be accessed in the normal way that we would access elements of
an array. Instead we access members of this class by overloading the square bracket
operator. Overloading this operator allows us to check that the index is a valid index
before returning the variable requested.

Use of the class above is demonstrated in the code below. Note (in line 6) how us-
ing this class requires us to declare the array v as an instance of a DoubleVector,
with the size of this array being enclosed within pointed brackets. Subsequently this
array is accessed in exactly the same way as a normal array, but with the additional
feature that a check is carried out on the index every time an element of the array is
accessed through the overloading of the square bracket operator.

Listing 8.2 UseDoubleVector.cpp
�

1 #include <iostream>
2 #include "DoubleVector.hpp"
3

4 int main(int argc, char* argv[])
5 {
6 DoubleVector<5> v;
7 v[0] = 1.0; // This is OK
8 v[7] = 5.0; // Will trip assertion
9

10 return 0;
11 }

8.2 Templates for Polymorphism 133

8.2 Templates for Polymorphism

There are very good reasons in C++, and many other programming languages, for
distinguishing between integer variables and floating point variables. For example,
the argument(s) used to access an element of an array may only take integer values
which provides one level of validation that the index is correct. Furthermore, inte-
gers may be stored much more efficiently than floating point variables as there is no
need to store the exponent that they are raised to. One slight drawback in having to
distinguish between these variables is that if we want to write a function that is valid
for all numerical variables—that is, both integers and floating point variables—we
have to write more than one instance of the same function. Templates, however,
provide a way around this.

The program below demonstrates how a function GetMaximum that returns the
maximum of two numbers, either integers or floating point variables, may be writ-
ten. The code is very similar to the code that we would write to calculate the maxi-
mum of two numbers, although there are two important differences. The first differ-
ence is that the function prototype in line 3 of the listing specifies that the function
is defined for a general class T, and that the return type and both function arguments
will be instances of the same class T. To call the function, we have to put the data
type used in angled brackets as is shown in lines 7 and 8 of the listing. The function
GetMaximum demonstrates polymorphism, because it can perform the same oper-
ation on different types of input argument. This type of polymorphism is also called
static polymorphism or compile-time polymorphism, because when the compiler
sees line 7 or 8 of the listing it makes a specific version of GetMaximum ready for
the int or double type.

�

1 #include <iostream>
2

3 template<class T> T GetMaximum(T number1, T number2);
4

5 int main(int argc, char* argv[])
6 {
7 std::cout << GetMaximum<int>(10, -2) << "\n";
8 std::cout << GetMaximum<double>(-4.6, 3.5) << "\n";
9

10 return 0;
11 }
12

13 template<class T> T GetMaximum(T number1, T number2)
14 {
15 T result;
16 if (number1 > number2)
17 {
18 result = number1;
19 }
20 else
21 {
22 //number1 <= number2
23 result = number2;

134 8 Templates

24 }
25 return result;
26 }

8.3 A Brief Survey of the Standard Template Library

The Standard Template Library (STL) contains many commonly used patterns that
may be reused for different types of objects. In this survey, we give a summary of
the features available that are particularly relevant to writers of scientific software.

Containers, such as random-access vectors and sets, are dynamic arrays where
the STL is responsible for memory management. We now demonstrate how these
two containers may be used. Other containers that are available in the STL are maps,
multimaps, multisets, lists and deques (double-ended queues, pronounced “decks”).
There are also many more algorithms that may be performed on these containers
other than those presented here. These containers and algorithms do not have many
applications in scientific computing software and so we do not discuss these here.
Nevertheless, it is useful for readers to be aware that they exist.

8.3.1 Vectors

The STL vector class is a very useful container because it is an extensible class
which has a similar interface to the regular C++ array. The fact that it is extensible
means that its size is not fixed (either at compile time or at the time that it is created)
and that it will grow to accommodate new items as necessary. One can either declare
an empty STL vector of minimal capacity which then grows by adding new items to
it, or one can exploit efficiency savings by knowing the maximum size at compile
time or run time.

If you explore available STL containers, you will notice that the interface for the
STL vector is very similar to the interface for the other basic container types deque
and list. This is a good example of object abstraction, because the details which
distinguish these container types from each other are not exposed to the user. The
main differences between these types of containers are in the efficiency which STL
guarantees for various operations: it is possible to retrieve an item from an STL
vector via its index in a single operation, but this is not possible from an STL list.
It is generally only efficient to insert and delete elements to the back of a vector
object and to the front or back of a deque. The list type allows efficient constant
time insertion and deletion anywhere in the container.

The use of the vector container is shown in the listing below. Several features of
the STL are included in this listing which we now highlight.
• To use the vector container, we must include the vector header file (line 2).

For some algorithms that may be used on STL vectors, such as sorting, we must
include the algorithm header file (line 3).

8.3 A Brief Survey of the Standard Template Library 135

• In line 8, we declare a vector of strings called destinations. Note that we
do not have to state the size of the vector: the STL will handle this for us.
We can write std::vector<std::string> destinations(50); if
we wished to begin with a vector of 50 empty strings rather than an empty vector.

• In line 9, we reserve 6 elements. This sets the vector’s capacity without chang-
ing the number of items in the vector. Although this line is unnecessary, it may
produce efficiency savings in more memory-intensive code because it establishes
that 6 items can be stored in the vector without having to reallocate any memory
later.

• In line 10, we introduce our first entry to the vector, the string “Paris”. The
member function push_back appends a copy of this string to the current vector,
which is currently empty.

• In line 11, we append another entry to the end of the vector, that is, the second
entry of this vector is “New York”.

• In line 12, we append a further entry to the vector, that is, the third entry of this
vector is “Singapore”.

• In lines 13 and 14, we demonstrate the use of the member function size for
accessing the number of elements of the vector.

• In lines 17–20, we show that entries of the vector may be accessed in the same
way as for a standard vector.

• Lines 22–26 demonstrate how to access entries of the vector using an iterator. The
iterator is declared in line 22, where we define what type of vector the iterator is
associated with, that is, in this case a vector of strings. In line 23, we construct a
for loop that iterates from the start of the vector to the end of the vector using
this iterator. The entries are printed using line 25, which prints out the contents of
the vector entry that the iterator is pointing at. Note the use of the overloaded *
operator which looks like a pointer de-reference.

• In line 28, we add a string to the start of a vector by using the insert method,
and inserting at the start of the vector using the begin method: all subsequent
entries are now moved one place back.

• In line 29, we add a string to the vector, and place it in the second position: all
subsequent entries are again moved one place back.

• In line 30, we add another entry to the end of the vector. We then print out the
number of entries of the vector, and the entries, using lines 31–38.

• In lines 40 and 41, we erase all entries of the vector that appear after the third
entry, and then print out the number of entries of the vector, and the entries, using
lines 42–49.

• In line 51, we use the algorithm sort: this algorithm will sort a vector of strings
into alphabetical order and requires the header file algorithm as described
above. This is verified by printing the entries of the vector using lines 52–59.

�

1 #include <iostream>
2 #include <vector>
3 #include <algorithm>
4 #include <string>

136 8 Templates

5

6 int main(int argc, char* argv[])
7 {
8 std::vector<std::string> destinations;
9 destinations.reserve(6);

10 destinations.push_back("Paris");
11 destinations.push_back("New York");
12 destinations.push_back("Singapore");
13 std::cout << "Length of vector is "
14 << destinations.size() << "\n";
15 std::cout << "Entries of vector are\n";
16

17 for (int i=0; i<3; i++)
18 {
19 std::cout << destinations[i] << "\n";
20 }
21

22 std::vector<std::string>::const_iterator c;
23 for (c=destinations.begin(); c!=destinations.end(); c++)
24 {
25 std::cout << *c << "\n";
26 }
27

28 destinations.insert(destinations.begin(), "Sydney");
29 destinations.insert(destinations.begin()+1, "Moscow");
30 destinations.push_back("Frankfurt");
31 std::cout << "Length of vector is "
32 << destinations.size() << "\n";
33 std::cout << "Entries of vector are\n";
34

35 for (c=destinations.begin(); c!=destinations.end(); c++)
36 {
37 std::cout << *c << "\n";
38 }
39

40 destinations.erase(destinations.begin()+3,
41 destinations.end());
42 std::cout << "Length of vector is "
43 << destinations.size() << "\n";
44 std::cout << "Entries of vector are\n";
45

46 for (c=destinations.begin(); c!=destinations.end(); c++)
47 {
48 std::cout << *c << "\n";
49 }
50

51 sort(destinations.begin(), destinations.end());
52 std::cout << "Length of vector is "
53 << destinations.size() << "\n";
54 std::cout << "Entries of vector are\n";
55

56 for (c=destinations.begin(); c!=destinations.end(); c++)
57 {

8.3 A Brief Survey of the Standard Template Library 137

58 std::cout << *c << "\n";
59 }
60

61 return 0;
62 }

8.3.2 Sets

A set is an STL container where new entries are only stored if they are distinct from
the entries already stored. The machinery for maintaining the distinctness of the en-
tries is abstracted from the user. One might implement a set as an unordered list
of elements, so that each insertion requires a membership test that may involve an
equality check with all elements of the existing set. One might make a more effi-
cient implementation using an ordered list, so that membership tests involve fewer
equality checks against existing members. The STL set actually uses a more efficient
structure1 so that it is able to guarantee the efficiency of all possible set operations.
It is only possible to make an efficient set implementation if the elements of the set
can be ordered. We will demonstrate the set container by using the class of points
in two dimensions whose members have coordinates that take integer values. As the
items in a set have to be comparable, we need to define an ordering on points in two
dimensions, which we do by overloading the “less than” operator for these points.
If we are comparing two points P0 and P1, which represent the points (x0, y0) and
(x1, y1), we say that P0 < P1 if x0 < x1, and P0 > P1 if x0 > x1. Only if x0 = x1 we
say that P0 < P1 if y0 < y1, and P0 > P1 if y0 > y1. If x0 = x1 and y0 = y1 then the
points P0 and P1 are identical: the set would only store one instance of these two.

The class Point2d representing the class of points in two dimensions is given
in the listing below. This class has two member variables, x and y, that store the
x- and y-coordinates. There is also a constructor that allows us to initialise the
coordinates, and an overloaded “less than” < operator that allows us to order points
in two dimensions as described above.

�

1 class Point2d
2 {
3 public:
4 int x, y;
5 Point2d(int a, int b)
6 {
7 x = a;
8 y = b;
9 }

10 bool operator<(const Point2d& other) const
11 {

1The STL set is implemented as a tree structure known as a red-black search tree.

138 8 Templates

12 if (x < other.x)
13 {
14 return true;
15 }
16 else if (x > other.x)
17 {
18 return false;
19 }
20 else if (y < other.y)
21 {
22 // x == other.x
23 return true;
24 }
25 else
26 {
27 // x == other.x and
28 // y >= other.y
29 return false;
30 }
31 }
32 };

In the listing below, we create a set of instances of the class Point2d. When
using the set container, we must include the set header file (line 1). In line 7 we
create a set, made up of instances of the class Point2d, that is called points. In
lines 9–12, we attempt to insert four points into this set using the insert method
associated with sets. Two of these points—the origin and the point (0, 0)—are
identical, and so only one is stored. This is seen in lines 14 and 15 where we print
out the size of the set, which is 3. Note how the iterator may be used in lines 17–21
of the code to print the member variables of the class of points in line 20.

�

1 #include <set>
2 #include <iostream>
3 #include "Point2d.hpp"
4

5 int main(int argc, char* argv[])
6 {
7 std::set<Point2d> points;
8 Point2d origin(0, 0);
9 points.insert(origin);

10 points.insert(Point2d(-2, 1));
11 points.insert(Point2d(-2, -5));
12 points.insert(Point2d(0, 0));
13

14 std::cout << "Number of points in set = "
15 << points.size() << "\n";
16

17 std::set<Point2d>::const_iterator c;
18 for (c=points.begin(); c!=points.end(); c++)
19 {
20 std::cout << c->x << " " << c->y << "\n";

8.4 Tips: Template Compilation 139

21 }
22

23 return 0;
24 }

8.4 Tips: Template Compilation

In Sect. 8.1, we presented a templated class DoubleVector in which the size of
the vector is specified at compile time. Since the size of the vector in UseDou-
bleVector.cpp (Listing 8.2) is known at compile time, the memory allocation
is static.

When building a program to use a templated class such as DoubleVector
we might follow the pattern laid down in Sect. 6.2.4.1 of placing the definition of
the class in the file DoubleVector.hpp and the implementation of the class
in the file DoubleVector.cpp. We would write a main program to test it and
write the rules for compilation into a Makefile. There is an unfortunate snag
with this plan, because when we instantiate a vector (DoubleVector<5>, say)
in our main program and compile it, the compiler has no access to the implemen-
tation from DoubleVector.cpp. The compiler needs to compile code from the
DoubleVector.cpp file, in which all the instances of DIM are replaced by “5”.

There are three strategies which can be used to overcome this template instanti-
ation problem.
1. Each file which uses the class may include the implementation of the entire class

through the use of #include "DoubleVector.cpp". This means the code
compilation may be slower since the entire class must be compiled every time
it is used. It also means that care must be taken to ensure that the file Dou-
bleVector.cpp is included at most once.

2. A similar solution is to place the entire class in the file DoubleVector.hpp,
as we did for DoubleVector in Listing 8.1 of Sect. 8.1. This, again, has the
disadvantage that the entire class must be compiled every time it is used.

3. A more advanced solution to the problem is explicit instantiation. If it is known
that we only use DoubleVector with a small set of sizes, then we can force
the compiler to produce exactly the ones which are needed as it compiles Dou-
bleVector.cpp into the object file DoubleVector.o. This is done by
making an unnamed instance of the class of each required size in the file Dou-
bleVector.cpp, as the code fragment below illustrates.

�

1 #include "DoubleVector.hpp"
2

3 template class DoubleVector<5>;
4 template class DoubleVector<7>;

140 8 Templates

8.5 Exercises

8.1 The probability of rain for each of the next N days is to be stored in a double
precision floating point array of size N. As the entries of this array are probabilities
they should all take values between 0 and 1 inclusive. However, as they have been
calculated using a numerical algorithm, these probabilities are only correct to within
an absolute error of 10−6: that is, in reality these numbers may be between −10−6

and 1 + 10−6 inclusive. Using the ideas presented in Sect. 8.1, use templates so that
when accessing an individual entry of the array:
1. the value stored by the array is returned if it is between 0 and 1 inclusive;
2. the value 0 is returned if the value stored is between −10−6 and 0 inclusive;
3. the value 1 is returned if the value stored is between 1 and 1 + 10−6 inclusive;

and
4. an assertion is tripped otherwise.

8.2 Use templates to write a single function that may be used to calculate the abso-
lute value of an integer or a double precision floating point number.

8.3 Use the class of complex numbers given in Sect. 6.4 to create an STL vec-
tor of complex numbers. Investigate the functionality of the STL demonstrated in
Sect. 8.3.1 using this vector of complex numbers. Note that when you add an ob-
ject to an STL vector it is a copy which is added, so it is imperative that the copy
constructor is working as expected.

8.4 Modify the example of an STL set given in Sect. 8.3.2 so that the coordinates of
the point are now given by double precision floating point variables. You will now
need to think a bit more carefully about what it means for two coordinates to be
equal: see the tip on comparing two floating point numbers given in Sect. 2.6.5.

9Errors and Exceptions

In Sect. 1.6, we introduced the concept of an assertion. This is a way of forcing
your program to terminate execution, should something unexpected happen. The
program which motivated the use of assertion in Sect. 1.6 was one which calculated
the square root of a number entered at the command-line. Here is a version of that
program where the assertion has been removed by turning it into a comment.

�

1 #include <iostream>
2 #include <cassert>
3 #include <cmath>
4

5 int main(int argc, char* argv[])
6 {
7 double a;
8 std::cout << "Enter a non-negative number\n";
9 std::cin >> a;

10 //Run without assertion: assert(a >= 0.0);
11 std::cout << "The square root of "<< a;
12 std::cout << " is " << sqrt(a) << "\n";
13 return 0;
14 }

What happens when a user ignores the request and enters a negative number at the
command line? Without the assertion on line 10 then it is likely that the program will
complete without error. This is because the computer’s floating point unit renders
the result of some calculations such as sqrt(-1.0) as “not a number” or nan for
short.

�

Enter a non-negative number
-1
The square root of -1 is -nan

Other examples of floating point operations which produce the answer nan in-
clude 0.0/0.0 and log(0.0). Some calculations such as 1.0/0.0will resolve

J. Pitt-Francis, J. Whiteley, Guide to Scientific Computing in C++,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-4471-2736-9_9, © Springer-Verlag London Limited 2012

141

http://dx.doi.org/10.1007/978-1-4471-2736-9_9

142 9 Errors and Exceptions

to a floating point representation of infinity (inf). In a scientific program, once one
variable has been set to nan or inf then this value is likely to be propagated to
later parts of the calculation. It is normally best to check for this sort of error at the
earliest possible stage so that computation is not wasted. In this context, it would be
prudent to check in any piece of code that uses division, square root, logarithms etc.
that the values of all the arguments are in a sensible range. As we have already seen,
assertions are one method of checking such arguments. In this chapter, we will see
that exceptions are another method of checking that are more flexible in some ways.

9.1 Preconditions

Every section of a program (where a “section” could be a function, method, block,
for-loop iteration body etc.) can be thought of as having the task to produce a
postcondition when given a valid precondition. The postcondition of the program
above (the thing which it is tasked to do) is that it prints the square root of a given
number. It does this subject to the precondition that the number is nonnegative.

Consider a method which finds all the roots of a function f (x) in the half-open
range xmin ≤ x < xmax. This method might need to assume as a precondition that the
function f is continuous and differentiable over the same range xmin ≤ x < xmax.
More trivially, it might also need to assume that xmin < xmax. What should happen if
xmin > xmax or xmin = xmax? If the precondition for correct functionality is not met
then what should happen? Before we answer this question, we will first consider a
specific case.

9.1.1 Example: Two Implementations of a Graphics Function

In a particular graphics library, there is a function for rendering a 2-D annulus.
This function takes four input arguments: the inner radius, the outer radius and the
number of radial and axial segments. The specification of the library says that the
outer radius must be bigger than the inner radius and both should be nonnegative.
It also says that the segment numbers must be strictly positive. The specification
further says that it is valid to give the inner radius as zero, in which case the annulus
will be rendered as a 2-D disk with no hole.

There is a cautionary story about a professor who wrote a program for his stu-
dents which used this graphics function to draw disks. He misread the specification
and set the radius values the wrong way round so that the outer value was 0.0 and
the inner value was 1.0. Without realising his mistake, he distributed the program
source code to his students, some of whom began to complain that it would not run.

The problem was that the students whose code would not run were using a dif-
ferent implementation of the library. The two different implementations of the same
specification were dealing with errors in different ways. The implementation of this
function in the graphics library as used by the professor contained a check for his
type of error which silently fixed the problem by interchanging values in a manner
similar to the code given below.

9.2 Three Levels of Errors 143

�

1 #include <cassert>
2 void RenderAnnulus(double innerRadius, double outerRadius,
3 int slices, int segments)
4 {
5 //A "helpful" implementation fixes the input
6 //so RenderAnnulus(1.0, 0.0, 30, 3); will work
7 if (innerRadius > outerRadius)
8 {
9 //The arguments are the wrong way round

10 //Swap them
11 double temp = innerRadius;
12 innerRadius = outerRadius;
13 outerRadius = temp;
14 }
15 //...then render the annulus
16 }

Meanwhile, the students who complained that the program was not running prop-
erly were using a library implementation in which the annulus function terminated
on reaching this type of error. The listing below shows that this termination be-
haviour can easily by implemented by checking the precondition with an assertion.

�

1 #include <cassert>
2 void RenderAnnulus(double innerRadius, double outerRadius,
3 int slices, int segments)
4 {
5 //Another implementation only checks the input
6 //so RenderAnnulus(1.0, 0.0, 30, 3); trips an assertion
7 assert (innerRadius <= outerRadius);
8 //...then render the annulus
9 }

The “helpful” implementation, as used by the professor, was in reality making a
bug in his code invisible—only for it to become embarrassingly visible in the other
implementation. Both implementations are correct in the sense that they follow the
specification and perform the correct operations provided that the preconditions are
met. Unfortunately, the library specification left the handling this kind of error open
to interpretation.

9.2 Three Levels of Errors

Some of the most important decisions that a programmer has to make are about
how errors should be treated. What should happen if the user misreads a prompt and
enters some invalid input? What should happen if the application writer accidentally
permutes the input arguments of a library function? What should happen if some
numerical scheme has generated inf or nan because of divergence?

144 9 Errors and Exceptions

The answer to all these questions is the same: “It depends”. It’s good to treat
errors differently depending on their severity, both in terms of how likely they are
to happen and in terms of how easy it might be to fix the problem and carry on.
The difficult balance of knowing how severe an error might be is illustrated by the
RenderAnnulus story in Sect. 9.1.1 where the programmers of different library
implementations chose to deal with the same error in completely different ways. One
set of programmers decided the error was trivial to fix, while the other set decided
to abort the program.

We propose a strategy for handling errors which is built on a framework of three
levels of errors.
1. If the error can be fixed safely, then fix it. If need be, warn the user.
2. If the error could be caused by some reasonable user input then throw an excep-

tion up to the calling code, since the calling code should have enough context to
fix the problem.

3. If the error should not happen under normal circumstances then trip an assertion.
These three basic levels could be further refined. You may distinguish between

errors that trip assertions (which are normally removed in optimised code) and errors
that should halt the program under all circumstances. At the other end of the scale,
you might distinguish between error fixes which are silent and those which should
warn the user that something has been changed.

The exception level of error is a compromise between patching the problem to
carry on, and stopping completely. It is used in circumstances where the caller of
a function may have enough information to be able to deal with the error. For ex-
ample, a nonlinear Newton root finder may diverge and hence signal an error, but
the programmer may know that the original task in question can still be solved by
calling the same function with a different initial guess, or by calling it with a damp-
ing factor, or by calling a bisection root finder. The logic would be to first try the
Newton solver, but if that function signalled an error then to find the root using a
more expensive bisection routine.

9.3 Introducing the Exception

An exception in C++ is a way of interrupting the normal flow of control of a pro-
gram and throwing a bundle of information back to the calling code. This bundle of
information is encapsulated inside an object. We define in this section a class called
Exception, but objects of any class may be thrown between functions to signal
an error.

The use of exceptions requires the keywords try, throw and catch.
• try is used in the calling code and tells the program to execute some statements

in the knowledge that some error might happen.
• throw is used when the error is identified. The function called will encapsulate

information about the error into an Exception object and throw it back to the
caller.

• catch is used in the calling code to show how to attempt to fix the error. Every
block of code that has the try keyword must be matched by a catch block.

9.4 Using Exceptions 145

• Exceptions which are not caught by the calling code may cause the program to
halt.
When an error occurs we want the code to “throw” two pieces of information:

a one-word summary of the problem type and a more lengthy description of the
error. We write a class Exception (shown below) to store these two pieces of
information, and with the ability to print this information when required.

Listing 9.1 Exception.hpp
�

1 #ifndef EXCEPTIONDEF
2 #define EXCEPTIONDEF
3

4 #include <string>
5

6 class Exception
7 {
8 private:
9 std::string mTag, mProblem;

10 public:
11 Exception(std::string tagString, std::string probString);
12 void PrintDebug() const;
13 };
14 #endif //EXCEPTIONDEF

Listing 9.2 Exception.cpp
�

1 #include <iostream>
2 #include "Exception.hpp"
3 //Constructor
4 Exception::Exception(std::string tagString,
5 std::string probString)
6 {
7 mTag = tagString;
8 mProblem = probString;
9 }

10

11 void Exception::PrintDebug() const
12 {
13 std::cerr << "** Error ("<<mTag<<") **\n";
14 std::cerr << "Problem: " << mProblem << "\n\n";
15 }

9.4 Using Exceptions

In Listing 3.4, we read from a named file Output.dat. We assumed that this file
existed and tripped an assertion if it did not. In the code below, we present a more
sophisticated program for opening a file which uses exceptions to attempt to fix the

146 9 Errors and Exceptions

problem. If the file cannot be opened by the ReadFile function, an exception is
thrown. This is caught by code that prompts the user to enter an alternative file name.
Note that ReadFile takes the name of the file as a C++ string which is converted
to a C string on line 8 (using c_str which was introduced in Sect. 1.4.8).

�

1 #include <iostream>
2 #include <fstream>
3 #include "Exception.hpp"
4

5 void ReadFile(const std::string& fileName, double x[],
6 double y[])
7 {
8 std::ifstream read_file(fileName.c_str());
9 if (read_file.is_open() == false)

10 {
11 throw (Exception("FILE", "File can’t be opened"));
12 }
13 for (int i=0; i<6; i++)
14 {
15 read_file >> x[i] >> y[i];
16 }
17 read_file.close();
18

19 std::cout << fileName <<" read successfully\n";
20 }
21

22 int main(int argc, char* argv[])
23 {
24 double x[6], y[6];
25 try
26 {
27 ReadFile("Output.dat", x, y);
28 }
29 catch (Exception& error)
30 {
31 error.PrintDebug();
32 std::cout << "Couldn’t open Output.dat\n";
33 std::cout << "Give alternative location\n";
34 std::string file_name;
35 std::cin >> file_name;
36 ReadFile(file_name, x, y);
37 }
38 }

9.5 Tips: Test-Driven Development

It is sometimes the case that you need to take a program which you have developed
in the past and seek to extend its functionality, perhaps to address some new research
question. Assuming that you are able to understand the working of the original code

9.6 Exercises 147

because it is well-documented (as suggested in Sect. 5.10) and has a literate coding
style (as suggested in Sect. 6.6), there is still a potential pitfall. Suppose you add the
new functionality, use it to solve your new research problem, but later discover that
the original functionality of the code has changed. Perhaps you are no longer able
to reproduce the results which are needed for a publication.

A technique for avoiding such scenarios is test-driven development—a program-
ming practice in which the testing of code is central. In fact, testing plays such a
central role in this technique that writing the code that tests the new functionality
comes before writing the new code for implementing this functionality. Proponents
of test-driven development are keen that a test case is written by a programmer be-
fore the main code is changed. This test will initially not compile, but the program-
mer will be able to modify the code until the test runs and passes. It is then important
that all tests produced in this way are run on a regular basis—thus ensuring that any
change in functionality is spotted as soon as possible.

If you wish to try test-driven development for yourself, then the following tips
may help you to get the most out of the technique.
1. Use a C++ testing framework library, such as CxxTest, Boost.Test or

googletest. This will help you structure your tests.
2. Add one or more tests for every new piece of functionality.
3. Make tests definitive—they should either pass or fail. However, beware of float-

ing point tolerances and allow for rounding errors in calculations.
4. Remember to write tests for corner cases. These are test inputs which may be

rare, but might cause problems—collinear triangles, singular matrices, the com-
plex number 0 + 0i etc.

5. Review your tests from time to time. Add new tests as necessary and remove
only those which you know to be redundant.

6. Automate your testing, so that you do not have to remember to run the tests or
remember to check the results.

9.6 Exercises

9.1 Extend the Exception class given in Listings 9.1 and 9.2 by creating two in-
herited classes OutOfRangeException and FileNotOpenException. The
constructors for each of the two classes should take only the probString argu-
ment and should set the tagStringmember to an appropriate string. Write a catch
block which is able to catch a generic exception but can also differentiate between
these two types of error.

9.2 An earlier tip in Sect. 4.3.2 showed how it was possible for bad memory allo-
cation to terminate your program. If you want your program to continue through a
memory allocation error there are two ways to cope with the exception: to turn the
exception off (and check the value of the pointer) or to catch the exception. Here
is some code which demonstrates how to turn off the exception message but still
detect bad allocation of memory, without terminating the program.

148 9 Errors and Exceptions

�

1 double* p_x;
2 p_x = new (std::nothrow) double[1000000000];
3 if (p_x == NULL)
4 {
5 std::cout << "Allocation failed\n";
6 }
7 delete p_x;

The proper way to deal with this issue is, of course, to catch the exception.
Rewrite the code fragment above so that there is a try block around the line of
code which attempts to allocate a large vector to p_x and demonstrate that you can
catch this exception.
[Hint: The name of the exception class which you need to catch is not Exception.
It is std::bad_alloc.]

9.3 In Problem 7.3 in Chap. 7, we developed a library for solving initial value or-
dinary differential equations. Let us suppose that the solution of the ordinary differ-
ential equation represents a probability of some event happening as time evolves.
The true solution of this equation should therefore be nonnegative, and no greater
than one. Of course, due to both rounding errors and errors induced by the numeri-
cal approximation used to calculate the numerical solution, this numerical solution
may violate these restrictions slightly. In this exercise, we will suggest how to ex-
tend the library developed in Sect. 7.3 to handle these requirements in a way that is
consistent with the discussion of dealing with errors given in Sect. 9.2.

We will assume that an acceptable value for the absolute error is 10−6. When
solving the differential equation, we therefore won’t be concerned if the solution
for a value of yi in Problem 7.3 lies in the interval 10−6 < yi < 0. Under these
circumstances, we would simply write the value 0.0 to file containing the solution
at each time ti instead of the value yi . Similarly, if the solution lies in the interval
1 < yi < 1 + 10−6 we would write 1.0 to file rather than the value yi . This is an
instance of an error of type #1 in the list given in Sect. 9.2.

Now suppose the value of yi lies further outside the range of acceptable values
than can be attributed to rounding error. The most likely cause of this error is a step
size h that is too large. Under these circumstances, an exception should be thrown
explaining this. The code that calls the library for solving initial value ordinary
differential equations would then know to reduce the step size: a suitable new step
size would be half of the step size currently being used. This is an instance of an
error of type #2 in the list given in Sect. 9.2.

It is, of course, possible that an error has been made elsewhere in the library or in
the code used to call the library. Under these circumstances persisting with making
the step size smaller may not solve the problem. We therefore want to terminate the
code if the step size h falls below some critical value. This is an instance of an error
of type #3 in the list given in Sect. 9.2.

Incorporate the error handling procedure described above into the library for
solving initial value ordinary differential equations developed in Problem 7.3 in

9.6 Exercises 149

Chap. 7. Test this error handling using the example initial value problem

dy

dt
= −100y,

with initial condition y = 0.8 when t = 0, for the time interval 0 < t < 100. Investi-
gate how different values of the step size h affect the error handling implemented.

10Developing Classes for Linear Algebra
Calculations

In this chapter, we will apply the ideas introduced earlier in this book to develop
a collection of classes that allow us to perform linear algebra calculations. We will
describe the design of a class of vectors in the body of this chapter. The exercises
at the end of the chapter will focus on developing this class further, developing a
companion class of matrices, and developing a linear system class that allows us to
solve matrix equations.

10.1 Requirements of the Linear Algebra Classes

As explained above, we will develop a class of vectors called Vector, a class
of matrices called Matrix and a linear system class called LinearSystem. The
vector and matrix classes will include constructors and destructors that handle mem-
ory management. These classes will overload the assignment, addition, subtraction
and multiplication operators, allowing us to write code such as “u = A*v;” where
u and v are vectors, and A is a matrix: these overloaded operators will include
checks that the vectors and matrices are of the correct size. The square bracket op-
erator will be overloaded for the vector class to provide a check that the index of
the array lies within the correct range, and the round bracket operator will be over-
loaded to allow the entries of the vector or matrix to be accessed using MATLAB

style notation, indexing from 1 rather than from zero.
The remainder of this chapter will focus on the development of a class of vectors.

The header file for this class is given in Listing 10.1, and the implementation of the
methods is given in Listing 10.2. The two variables that each instance of the class
are built upon are a pointer to a double precision floating point variable, mData, and
the size of the array, mSize. We have made both of these private members of the
class. We clearly need to write methods to both access and set values of the array.
We shall insist that the size of the array is set through a constructor. As such, we
shall not allow the user to change this variable through any method, but will write a
public method that allows us to access the size of a given vector.

J. Pitt-Francis, J. Whiteley, Guide to Scientific Computing in C++,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-4471-2736-9_10, © Springer-Verlag London Limited 2012

151

http://dx.doi.org/10.1007/978-1-4471-2736-9_10

152 10 Developing Classes for Linear Algebra Calculations

Listing 10.1 Vector.hpp
�

1 #ifndef VECTORHEADERDEF
2 #define VECTORHEADERDEF
3

4 class Vector
5 {
6 private:
7 double* mData; // data stored in vector
8 int mSize; // size of vector
9 public:

10 Vector(const Vector& otherVector);
11 Vector(int size);
12 ~Vector();
13 int GetSize() const;
14 double& operator[](int i); // zero-based indexing
15 // read-only zero-based indexing
16 double Read(int i) const;
17 double& operator()(int i); // one-based indexing
18 // assignment
19 Vector& operator=(const Vector& otherVector);
20 Vector operator+() const; // unary +
21 Vector operator-() const; // unary -
22 Vector operator+(const Vector& v1) const; // binary +
23 Vector operator-(const Vector& v1) const; // binary -
24 // scalar multiplication
25 Vector operator*(double a) const;
26 // p-norm method
27 double CalculateNorm(int p=2) const;
28 // declare length function as a friend
29 friend int length(const Vector& v);
30 };
31

32 // Prototype signature of length() friend function
33 int length(const Vector& v);
34

35 #endif

Listing 10.2 Vector.cpp
�

1 #include <cmath>
2 #include <iostream>
3 #include <cassert>
4 #include "Vector.hpp"
5

6 // Overridden copy constructor
7 // Allocates memory for new vector, and copies
8 // entries of other vector into it

10.1 Requirements of the Linear Algebra Classes 153

�

9 Vector::Vector(const Vector& otherVector)
10 {
11 mSize = otherVector.GetSize();
12 mData = new double [mSize];
13 for (int i=0; i<mSize; i++)
14 {
15 mData[i] = otherVector.mData[i];
16 }
17 }
18

19 // Constructor for vector of a given size
20 // Allocates memory, and initialises entries
21 // to zero
22 Vector::Vector(int size)
23 {
24 assert(size > 0);
25 mSize = size;
26 mData = new double [mSize];
27 for (int i=0; i<mSize; i++)
28 {
29 mData[i] = 0.0;
30 }
31 }
32

33 // Overridden destructor to correctly free memory
34 Vector::~Vector()
35 {
36 delete[] mData;
37 }
38

39 // Method to get the size of a vector
40 int Vector::GetSize() const
41 {
42 return mSize;
43 }
44

45 // Overloading square brackets
46 // Note that this uses ‘zero-based’ indexing,
47 // and a check on the validity of the index
48 double& Vector::operator[](int i)
49 {
50 assert(i > -1);
51 assert(i < mSize);
52 return mData[i];
53 }
54

55 // Read-only variant of []
56 // Note that this uses ‘zero-based’ indexing,
57 // and a check on the validity of the index

154 10 Developing Classes for Linear Algebra Calculations

�

58 double Vector::Read(int i) const
59 {
60 assert(i > -1);
61 assert(i < mSize);
62 return mData[i];
63 }
64

65 // Overloading round brackets
66 // Note that this uses ‘one-based’ indexing,
67 // and a check on the validity of the index
68 double& Vector::operator()(int i)
69 {
70 assert(i > 0);
71 assert(i < mSize+1);
72 return mData[i-1];
73 }
74

75 // Overloading the assignment operator
76 Vector& Vector::operator=(const Vector& otherVector)
77 {
78 assert(mSize == otherVector.mSize);
79 for (int i=0; i<mSize; i++)
80 {
81 mData[i] = otherVector.mData[i];
82 }
83 return *this;
84 }
85

86 // Overloading the unary + operator
87 Vector Vector::operator+() const
88 {
89 Vector v(mSize);
90 for (int i=0; i<mSize; i++)
91 {
92 v[i] = mData[i];
93 }
94 return v;
95 }
96

97 // Overloading the unary - operator
98 Vector Vector::operator-() const
99 {

100 Vector v(mSize);
101 for (int i=0; i<mSize; i++)
102 {
103 v[i] = -mData[i];
104 }
105 return v;
106 }
107

108 // Overloading the binary + operator
109 Vector Vector::operator+(const Vector& v1) const

10.1 Requirements of the Linear Algebra Classes 155

�

110 {
111 assert(mSize == v1.mSize);
112 Vector v(mSize);
113 for (int i=0; i<mSize; i++)
114 {
115 v[i] = mData[i] + v1.mData[i];
116 }
117 return v;
118 }
119

120 // Overloading the binary - operator
121 Vector Vector::operator-(const Vector& v1) const
122 {
123 assert(mSize == v1.mSize);
124 Vector v(mSize);
125 for (int i=0; i<mSize; i++)
126 {
127 v[i] = mData[i] - v1.mData[i];
128 }
129 return v;
130 }
131

132 // Overloading scalar multiplication
133 Vector Vector::operator*(double a) const
134 {
135 Vector v(mSize);
136 for (int i=0; i<mSize; i++)
137 {
138 v[i] = a*mData[i];
139 }
140 return v;
141 }
142

143 // Method to calculate norm (with default value p=2)
144 // corresponding to the Euclidean norm
145 double Vector::CalculateNorm(int p) const
146 {
147 double norm_val, sum = 0.0;
148 for (int i=0; i<mSize; i++)
149 {
150 sum += pow(fabs(mData[i]), p);
151 }
152 norm_val = pow(sum, 1.0/((double)(p)));
153 return norm_val;
154 }
155

156 // MATLAB style friend to get the size of a vector
157 int length(const Vector& v)
158 {
159 return v.mSize;
160 }

156 10 Developing Classes for Linear Algebra Calculations

The files required for the vector class are given above. These files may be down-
loaded from http://www.springer.com/978-1-4471-2735-2. Subsequent sections of
this chapter provide a commentary on why we have chosen to write the methods in
the way in which they appear.

10.2 Constructors and Destructors

In the tip given in Sect. 4.3.3, we encouraged the reader to ensure that, when dy-
namically allocating memory, every new statement was matched by a delete
statement. We explained that if this is not done, then the code may consume large
amounts of the available memory. Eventually the computer will run out of mem-
ory, preventing the code (and any other application running) from proceeding any
further. We have repeated this tip on several occasions. Writing appropriate con-
structors and destructors for the vector and matrix classes allows us to automatically
match a delete statement (through the calling of a destructor when the object goes
out of scope) with every new statement (hidden from the user of the class in a con-
structor). We now describe appropriate constructors and a destructor for the class of
vectors.

10.2.1 The Default Constructor

We want a constructor for the Vector class to allocate the memory required to
store a given vector when it is called. The default constructor takes no arguments,
and therefore this constructor has no way of knowing how many entries the vector
requires. As such, it cannot allocate an appropriate size to the vector, and so we
ensure that a default constructor is never used by not supplying a default constructor.
The automatically generated default constructor will not be available to the user
because we are supplying an alternative specialised constructor.

10.2.2 The Copy Constructor

Let us suppose we have an instance of the class Vector called u. If we were to use
the automatically generated copy constructor to create another vector called v, then
this constructor would not perform the tasks that we require of the copy constructor.
The member mSize would be correctly set. However, the automatically generated
copy constructor would not allocate any memory for the new copy of the data, and
so it would be impossible for the entries of the vector to be copied correctly. What
would actually happen is that the pointer mData in the original vector u would be
assigned to the pointer mData in the new vector v. As no new memory would be
allocated, this would have the effect that v would simply become a different name
for the original vector u: there would only be one vector stored, and changing the
entries of v would therefore have the unintended effect of changing those of u, and

http://www.springer.com/978-1-4471-2735-2

10.3 Accessing Private Class Members 157

vice versa. A further complication of not overriding the default copy constructor
would be that, because two vectors alias their mData pointers with the same piece
of memory, both vectors would attempt to de-allocate it (by calling delete in their
destructor, see Sect. 10.2.4) when they went out of scope.

What we actually want to happen when the copy constructor is called is for the
member mSize of the new vector v to be set to the same value as for the original
vector u. Memory should then be allocated for the new vector so that v has the same
number of entries as u, and the entries of u then copied into the correct position in
the new vector v. We therefore override the automatically generated copy construc-
tor so that it sets the size of v to the size of u, allocates memory for the vector v of
the correct size, and then copies the entries of u into v.

10.2.3 A Specialised Constructor

We have supplied no definition for the default constructor to ensure that it is never
used, and have overridden the copy constructor so that if we already have a vector
we may create a copy of that vector. We also include a constructor that requires a
positive integer input that represents the size of the vector. This constructor sets the
member mSize to this value, allocates memory for the vector, and initialises all
entries to zero.

10.2.4 Destructor

The automatically generated destructor will delete the pointer mData and the in-
teger mSize when an instance of the class Vector goes out of scope, but will
not free the memory allocated to this instance of the class: this would be similar
to not providing a matching delete statement for a new statement. We therefore
override the automatically generated destructor to free the memory allocated for an
instance of the class Vector when it goes out of scope.

10.3 Accessing Private Class Members

In Sect. 10.1, we explained that we were going to make both the size of the vector,
mSize, and the pointer to the entries of the vector, mData, private members of the
class. This has the advantage that we can only set the size of the vector through the
constructor (ensuring that this member is a positive integer, and preventing us from
inadvertently changing it while a code is being executed), and allows us to perform
a validation that the index of an entry of a vector is correct before attempting to
access that entry. In this section, we explain how we have written the methods that
allow us to access these private members.

158 10 Developing Classes for Linear Algebra Calculations

10.3.1 Accessing the Size of a Vector

The size, or length, of a vector is accessed through the public method GetSize.
This member takes no arguments, and returns the private member mSize.

10.3.2 Overloading the Square Bracket Operator

We overload the square bracket operator so that, if v is a vector, then v[i] returns
the entry of v with index i using zero-based indexing. This method first checks that
the index falls within the correct range—that is, a nonnegative integer that is less
than mSize—and then returns a reference to the value stored in this entry of the
vector.

10.3.3 Read-Only Access to Vector Entries

The overloaded square bracket operator can be used for both reading data from the
vector and for changing entries of the vector, through a reference. Since we may
need to guarantee that some functions which read from a vector do not change it,
we also supply a read-only const version. This public method Read is similar
to the square bracket operator. It uses zero-based indexing and first checks that the
index falls within the correct range and then returns a copy of the value stored in
this entry of the vector.

10.3.4 Overloading the Round Bracket Operator

The round bracket operator is overloaded to allow us to access entries of a vector us-
ing one-based indexing. We have chosen the round bracket operator for this purpose
as this allows similar notation to that employed by Fortran and MATLAB, both of
which use one-based indexing. In common with the overloaded square bracket oper-
ator described in Sect. 10.3.2, this method first validates the index before returning
the appropriate entry of the vector.

10.4 Operator Overloading for Vector Operations

Readers with experience of programming in MATLAB will appreciate the feature of
this system that allows the user to write statements such as “v = -w;” and “a =
b + c;” where v, w, a, b, c are vectors of a suitable size. We will allow similar
looking code to be written for the vectors developed in this chapter through operator
overloading: that is, we will define the assignment operator, and various unary and
binary operators. This will be very similar to the operator overloading for complex
numbers in Sect. 6.4. An additional feature required for the class being written here
is a check that the vectors are all of the correct size: this will be enforced using
assert statements.

10.5 Functions 159

10.4.1 The Assignment Operator

The overloaded assignment operator first checks that the vector on the left-hand side
of the assignment statement is of the same size as the vector on the right-hand side.
If this condition is met, the entries of the vector on the right-hand side are copied
into the vector on the left-hand side.

10.4.2 Unary Operators

The overloaded unary addition and subtraction operators first declare a vector of the
same size as the vector that the unary operator is applied to. The entries of the new
vector are then set to the appropriate value before this vector is returned.

10.4.3 Binary Operators

The overloaded binary operators first check that the two vectors that are operated on
are of the same size. If they are, a new vector of the same size is created. The entries
of this new vector are assigned, and this new vector is then returned.

10.5 Functions

A function to calculate the p-norm of a vector is included in our class of vectors. See
Sect. A.1.5 for a definition of the p-norm of a vector. This implementation allows
the user to call the function with an optional argument p: if this is not specified the
default value p = 2 (corresponding to the Euclidean norm) will be used.

10.5.1 Members Versus Friends

We note that most functionality in the class is given via member methods and mem-
ber operators. In order to calculate the 2-norm of a vector or to inspect its size, we
must write “u.CalculateNorm();” or “u.GetSize();”, respectively. This
may be considered a clumsy syntax by some users, especially those with experience
of MATLAB, and so we provide an alternative length function to complement
the GetSize method. The length function is declared as a friend within the class
which enables it to read the private mSize member. Note that whereas many of the
members of the class are declared const at the end of the signature—to ensure
they do not change the class itself—the length function guarantees that the vector
which it is given as an argument will remain constant through making the argument
a constant reference variable.

160 10 Developing Classes for Linear Algebra Calculations

10.6 Tips: Memory Debugging Tools

We stressed in a previous tip (Sect. 4.3.3) that every new should be matched with a
delete. This is especially important when a program allocates memory within a
loop. If a long-running program repeatedly allocates memory without de-allocating
it, then eventually that program will unnecessarily occupy all the available memory
of the computer. This problem—known as a memory leak—will eventually cause
the program to fail.

There are memory-related problems other than memory leakage. The following
code illustrates some common memory errors. The loop in lines 8–11 has an incor-
rect upper bound and thus the program attempts to write to x[10] which does not
match the 10 elements allocated to x in line 3. The variable z is never initialised,
which means that the flow of the program at the if statement on line 15 is unpre-
dictable. The second delete statement—on line 23—is in error since it attempts
to de-allocate memory which has already been de–allocated on the previous line.
Finally, the memory for y which was allocated on line 4 is never deleted.

Listing 10.3 Broken.cpp
�

1 int main(int argc, char* argv[])
2 {
3 double* x = new double[10];
4 double* y = new double[10];
5

6 // Error: x[10] is accessed
7 // May cause a run-time error
8 for (int i=0; i<=10; i++)
9 {

10 x[i] = i;
11 }
12

13 // Error: z is not set
14 int z;
15 if (z == 0)
16 {
17 y[0] = x[0];
18 }
19

20 // Error: x de-allocated twice
21 // May cause a run-time error
22 delete[] x;
23 delete[] x;
24 // Error: y still allocated
25 }

10.7 Exercises 161

The four problems in the program above will not prevent the code from being
compiled. The program may also run as expected until the final delete statement,
but crash at that point. So, in this program, most of the memory errors are unde-
tectable in normal circumstances.

These errors can be detected with a memory debugging tool such as the open
source programs Valgrind or Electric Fence. These tools run an executable file while
inspecting all the memory access calls. Some tools (such as Electric Fence) do this
by replacing the usual memory libraries with ones which intercept the calls. Others
tools (such as Valgrind) run the program inside a virtual machine and externally
monitor the memory accesses—a slower process, but one which does not require
recompilation of the program.

On running the program given in Listing 10.3 through Valgrind all four memory
problems are detected. A summary of the Valgrind output is given below.

�

Invalid write of size 8
at 0x4006BA: main (Broken.cpp:10)

Conditional jump or move depends on uninitialised value(s)
at 0x4006D1: main (Broken.cpp:15)

Invalid free() / delete / delete[]
by 0x4006F8: main (Broken.cpp:23)

80 bytes in 1 blocks are definitely lost...
by 0x40069A: main (Broken.cpp:4)

10.7 Exercises

The exercises in this chapter guide you to build on the Vector class with an ad-
ditional Matrix class. These classes are then combined into a LinearSystem
class (or, in the final exercise, an alternative class derived from it) which has a
method for solving systems of the form Ax = b for x. Example solutions for these
classes are given in Sect. C.1. Figure 10.1 illustrates a typical solution to these ex-
ercises with a collaboration diagram for all the classes produced by these exercises.
This diagram uses the same UML syntax as Fig. 7.1, as described in Sect. 7.2.

The files Vector.hpp and Vector.cpp given in Listings 10.1 and 10.2, as
well as the example Matrix and LinearSystem classes given in Sect. C.1, may
be downloaded from http://www.springer.com/978-1-4471-2735-2.

10.1 Make any improvements you might deem appropriate to the class of vectors.
You might be helped in this task by the following list.

http://www.springer.com/978-1-4471-2735-2

162 10 Developing Classes for Linear Algebra Calculations

Figure 10.1 Class
collaboration diagram for
PosDefSymmLinearSystem

10.7 Exercises 163

• The assertions for the round bracket operator are almost identical to those of
the square bracket operator and those of the Read method. Rewrite the Read
method and one of these operators in such a way that they call the remaining
operator (with a suitable offset, as necessary) and all the checks are given in one
place.

• There are many assertions in the class as it stands. These mean that it is very easy
to write programs which terminate with a run–time error. Can you turn any of the
assertions into exceptions or warnings (see Chap. 9)?

• Write an output operator for vectors using the pattern given in Sect. 6.4 for the
operator<< in the complex number class.

10.2 In this exercise, we will develop a class of matrices called Matrix for use
with the class of vectors developed in this chapter. The class of matrices should
include the features listed below. Your class should have private members mNum-
Rows and mNumCols that are integers and store the number of rows and columns,
and mData that is a pointer to a pointer to a double precision floating point vari-
able, which stores the address of the pointer to the first entry of the first row. See
Appendix A for details of the linear algebra that underpins these operations. Test all
functionality of your class using suitable examples.
1. An overridden copy constructor that copies the variables mNumRows and mNum-

Cols, allocates memory for a new matrix, and copies the entries of the original
matrix into the new matrix.

2. A constructor that accepts two positive integers—numRows and numCols—as
input, assigns these values to the class members mNumRows and mNumCols,
allocates memory for a matrix of size mNumRows by mNumCols, and initialises
all entries to zero.

3. An overridden destructor that frees the memory that has been allocated to the
matrix.

4. Public methods for accessing the number of rows, and the number of columns.
5. An overloaded round bracket operator with one-based indexing for accessing the

entries of the matrix so that, provided i and j are valid indices for the matrix,
A(i,j) may be used to access mData[i-1][j-1].

6. Overloaded assignment, unary and binary operators to allow addition, subtrac-
tion and multiplication of suitably sized matrices, vectors and scalars. You should
use assert statements to ensure the matrices and vectors are of the correct size.

7. A public method that computes the determinant of a given square matrix.

10.3 In this exercise, we will develop a class called LinearSystem that may be
used to solve linear systems. Assuming the system is nonsingular, a linear system
is defined by the size of the linear system, a square matrix, and vector (represent-
ing the right-hand side), with the matrix and vector being of compatible sizes. The
data associated with this class may be specified through an integer variable mSize,
a pointer to a matrix mpA, and a pointer to the vector on the right-hand side of
the linear system mpb. We suggest only allowing the user to set up a linear system
through the use of a constructor that requires specification of the matrix and vector:

164 10 Developing Classes for Linear Algebra Calculations

the member mSize may then be determined from these two members. If you do
not wish to provide a copy constructor, then the automatically generated copy con-
structor should be overridden and made private to prevent its use. As with the class
of vectors, we recommend that use of the automatically generated default construc-
tor is prevented by providing a specialised constructor but no default constructor.
A public method Solve should be written to solve this linear system by Gaussian
elimination with pivoting, as described in Sect. A.2.1.3. This method should return
a vector that contains the solution of the linear system.

Test your class using suitable examples.

10.4 Derive a class called PosDefSymmLinearSystem (or similar) from the
class LinearSystem that may be used for the solution of positive definite sym-
metric linear systems. Make the method Solve a virtual method of the class
LinearSystem, and override this method in the class PosDefSymmLinear-
System so that it uses the conjugate gradient method for solving linear systems
described in Sect. A.2.3. Your class PosDefSymmLinearSystem should per-
form a check that the matrix used is symmetric: testing that the matrix is positive
definite would be rather difficult and so we don’t suggest performing a check for
this property. Test your class using suitable examples.

11An Introduction to Parallel Programming
Using MPI

This chapter serves as an introduction to the Message Passing Interface (MPI),
which is a widely used library of code for writing parallel programs on distributed
memory architectures. It is not intended that you will learn much about parallel
programming from reading this chapter—we would recommend that you use a ded-
icated textbook (such as those listed in the Further Reading section at the end of
this book [9, 10]) or tutorial if you wish to gain a detailed knowledge. However, this
chapter should give you a basic guide to compiling and running parallel programs
written using MPI. If you are likely to use a scientific library built on MPI (such as
PETSc1) then what you learn here in this chapter should help to demystify some of
the library calls, and enable you to begin to edit parallel programs written by other
programmers.

11.1 Distributed Memory Architectures

There are several ways of classifying parallel computers and parallel programs but
the most basic one is that of shared memory versus distributed memory machines.
In the shared memory architecture several processing units (often called “cores”
nowadays), share access to a common pool of memory, as shown in Fig. 11.1. This
architecture has the advantage that a part of a program running on one core can
easily communicate with another, since it can read or write in the memory space of
the other part of the program. Programming for shared memory can be quite easy
and the programs are generally very quick, but historically shared memory machines
have been expensive, require specialised hardware, and physical constraints limit the
total number of cores. This situation is, however, now changing as most new desktop
computers have two or more cores.

1The Portable Extensible Toolkit for Scientific Computing (PETSc, pronounced “pet see”) is a
library providing functionality for the solution of linear and nonlinear systems of equations on
both sequential and parallel architectures.

J. Pitt-Francis, J. Whiteley, Guide to Scientific Computing in C++,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-4471-2736-9_11, © Springer-Verlag London Limited 2012

165

http://dx.doi.org/10.1007/978-1-4471-2736-9_11

166 11 An Introduction to Parallel Programming Using MPI

Fig. 11.1 A shared memory parallel architecture: the processors/cores are co-located and share a
common memory

Fig. 11.2 A distributed memory parallel architecture: each processor has sole access to its local
memory and the machines are connected on the same network

The other main architecture commonly used for parallel programming is the dis-
tributed memory architecture (see Fig. 11.2), where each processing unit has a local
memory space where it can read and write with ease, but the memory of other pro-
cessors is completely hidden. The processors are connected—allowing data to be
communicated between processors—on a network which could be a dedicated fast
switch network (in the case of a cluster computer) or could be the wider Internet.
The existence of the network between the processing units means that programming
for this architecture is likely to be more complicated, and that programs that rely
heavily on communication between processors are likely to be slower. However, as
we shall now explain, distributed memory programs are versatile.

The versatility of distributed memory programs is evidenced by the fact that it is
possible to take a program intended for a distributed memory architecture and run
it on a shared memory architecture. In this case, the individual parts of the parallel
program will have separate memory spaces within the shared memory system (so
that they cannot directly access each others’ memory), but will be able to commu-
nicate via the memory system. Communication is therefore much faster than over a
network. Distributed memory programs can readily be executed on shared memory
machines and are fast, but are also memory-hungry. The reverse is not true: you
cannot, in general, run a shared memory program on a distributed memory cluster.2

2There are several programming libraries which allow the programmer access to a distributed
shared memory computer where machines over a network act as if they were part on one contiguous
system. There has, however, not been wide-spread use of these libraries at the time of writing.

11.2 Installing MPI 167

You can even run distributed memory programs on a computer with a single
processor. All the parallel processes will be run as what are known as individual
threads, and will communicate via the memory system with the operating system
responsible for context switching between the threads. There is no performance ad-
vantage to doing this, since there is an overhead to run many threads on a single pro-
cessor. The advantage is that you can write and debug a program on a low-powered
laptop, tune it on a shared memory desktop, and then deploy exactly the same pro-
gram on a supercomputer.

11.2 Installing MPI

MPI is actually a set of standards for performing distributed computing. The MPI-1
standard documents the primary core of MPI (basic point-to-point and collective
communication) while the MPI-2 standard adds other useful but advanced features
such as parallel file access (through the input and output operations provided by
MPIIO) and remote memory access (one-sided communication). Because MPI is a
set of open standards there are various implementations available to choose from.
The most commonly used are the MPICH and Open MPI implementations. The
current versions of MPICH and Open MPI (formerly LAM/MPI) both implement
all the functionality in both the MPI-1 and MPI-2 standards.

Both MPICH and Open MPI are open source projects, under active development
and freely available to download. They may be run on a wide variety of machine
architectures, operating systems and communication infrastructures. The Open MPI
library implementation is currently available from major Linux distribution reposi-
tories and is therefore easy to install on Linux systems. It is configured so that it can
be used either on a stand-alone system (in the manner of a shared-memory system)
or across standard Ethernet using the secure shell ssh protocol.

11.3 A First Program Using MPI

Just as in Sect. 1.2, we introduce the MPI library by using a program that prints the
text “Hello World” to the screen. This time, it runs and prints in parallel. This simple
example C++ MPI program is shown below.

Before explaining the purpose of the individual statements in this program, we
need to explain what we mean by the term process. Loosely speaking a process is
a part of a parallel program that may be executed independently of the other parts,
provided that data can be communicated through MPI calls when required. As such,
a process can be thought of as a component of the program that can be executed on
one of the processors shown in Fig. 11.2. (However, we make a distinction between
processes and physical processors—or cores—because it is possible to run multiple
processes on a single processor.) If a code has p processes, then each process is
given a rank which is a unique integer in the range 0 ≤ rank < p.

168 11 An Introduction to Parallel Programming Using MPI

Listing 11.1 MpiHelloWorld.cpp
�

1 #include <iostream>
2 #include <mpi.h>
3

4 int main(int argc, char* argv[])
5 {
6 MPI::Init(argc, argv);
7

8 int num_procs = MPI::COMM_WORLD.Get_size();
9 int rank = MPI::COMM_WORLD.Get_rank();

10 std::cout << "Hello world from process " << rank
11 << " of " << num_procs << "\n";
12 MPI::Finalize();
13 return 0;
14 }

There are several lines of the program above which mention MPI. The first of
these is the extra include on line 2 which allows the program to see the full function-
ality of the MPI library. Subsequently, there are MPI::Init and MPI::Final-
ize statements on lines 6 and 12 which start and stop the parallel part of the code.
All MPI calls must lie between these two statements. The method Get_size al-
lows us to access the number of processes taking part in the program execution,
and the method Get_rank allows us to identify the process which is executing a
given statement. The COMM_WORLD object represents a communications group in-
volving all the processes running the current calculation. It is possible to split this
communication group up into smaller groups so that subsets of the processes can
share private data.

It should be noted that all the calls to MPI in program above use calls to spe-
cific C++ bindings to the MPI library. So Finalize is a function in the MPI
namespace (see Sect. B.4) and Get_size is a method of the communication object
COMM_WORLD. Some C++ programmers prefer not to use these bindings, but opt
instead for the plain C functions MPI_Init, MPI_Get_size, etc. which have a
slightly different syntax. Both versions are valid in C++ programs and can even be
mixed.

11.3.1 Essential MPI Functions

The functions MPI::Init and MPI::Finalize on lines 6 and 12 of List-
ing 11.1 are required calls in any MPI program. On line 6, MPI::Init is able
to promote the program from a single executable to a parallel program running as
several processes. In order to do this, it needs to know how many processes to launch
and on which machines they should be run—as we shall see in Sect. 11.3.2 this is
information that can be made available via command-line arguments. MPI::Init

11.3 A First Program Using MPI 169

inspects the command-line arguments provided by argc and argv, acting on any
it recognises.

Some MPI implementations of MPI::Init update their arguments by remov-
ing those which have been acted upon. Therefore, if you want an MPI program to
read some specific arguments from the command-line for use in your calculation,
the best place to do this is after MPI::Init since, at that point, all MPI-specific
arguments have been read and updated as necessary.

The MPI::Finalize makes sure that the program closes down neatly, closing
any remote connections and terminating all processes.

11.3.2 Compiling and Running MPI Code

So far when we have compiled C++ programs we have included code either from
standard locations (through including files such as cmath coupled with linking
to libraries through the -lm compiler flag) or from other parts of our own code
(such as Book.hpp). MPI, as a third-party library, is not part of the standard C++
distribution.

Normally when you compile against a third-party library, you would have to in-
clude extra compiler flags specifying the location of the header files, the location of
the libraries themselves, and names of some of the library dependencies. This can
be a little onerous. Added to this, on some large computing facilities there may be
several versions of MPI available which make it possible to accidentally compile
some of your program with one version, and the remainder of the program with
another, possibly incompatible, version. To ameliorate these difficulties, the MPI
distributions have provided “wrapper compilers” for C++ (as well as for C and For-
tran). The wrapper compiler automatically adds the correct compiler flags when it
calls the actual compiler. The C++ MPI compiler on most systems will be called
mpiCC, mpic++ or mpicxx. It is probably the case that it exists with more than
one synonym.

The standard Linux distribution of the Open MPI package has an mpiCC com-
piler which is a wrapper to the GNU g++C++ compiler. To ensure that this compiler
is installed, open a terminal window and type “which mpiCC” followed by return.
Hopefully the computer will respond by reporting the location of this compiler, for
example,

�

$ which mpiCC
/usr/bin/mpiCC
$

To compile the code given in Listing 11.1, open a terminal window and create a
directory where code may be saved. Move into this directory, and save the code as
“MpiHelloWorld.cpp”. The MPI wrapper compiler may have some compiler
flags of its own, but most flags are passed on to the normal g++ compiler. In the
same directory type,

170 11 An Introduction to Parallel Programming Using MPI

�

mpiCC -o MpiHelloWorld MpiHelloWorld.cpp

It is possible (but uninteresting) to run the executable which you have just pro-
duced as a standalone program. That is, without any of the MPI machinery and
with no code run in parallel. If this is the case then Get_size should return 1,
and Get_rank will return 0. Just as in array numbering, the process rank num-
bering starts at zero, so each process is given a unique integer rank in the range
0 ≤ rank < p, where p is the total number of processes.

�

$./MpiHelloWorld
Hello world from process 0 of 1

To run in parallel either on the same machine or across a network or cluster,
use the mpirun command (also known as mpiexec on some MPI implementa-
tions). This command will, if necessary, launch a service (called a daemon) on all
the machines involved in the calculation. It will then make sure that copies of the
executable can be run on every machine.

To run the program locally, use the “number of processes” -np flag.

�

$ mpirun -np 2 ./MpiHelloWorld
Hello world from process 0 of 2
Hello world from process 1 of 2

To run the program across a network, you can give a list of machines in a host
file, or alternatively list the machine names on the command-line. It is imperative
that you have an account on the remote machines, that you are able to connect via
ssh (preferably without being prompted for a password), that the machines have the
same MPI implementation installed on them, and that they are capable of running
the executable file which you are sending. In the example below, ranks 0 and 2 of a
3-process job are launched on remote machines. The rank 1 process will run on the
local machine, from where the job has been launched. Note that in this case buffered
output from the local machine has appeared on the screen before output which has
been sent from the remote machines.3

�

$ mpirun -host remote1.org,localhost,remote2.org ./MpiHelloWorld
Hello world from process 1 of 3
Hello world from process 2 of 3
Hello world from process 0 of 3

3MPI implementations vary in how they return console input from the individual processes to the
console from which the program was launched. Even when flush is called on the cout stream
it may still be the case that the MPI machinery is buffering output.

11.4 Basic MPI Communication 171

If you are running your program on a large cluster or a supercomputer, then it
is likely that the program will be launched from a script via a queueing system.
In this case, the locations of the processors available to you will be determined by
the job queue manager. You should obtain detailed instructions from the system
administrators about which arguments to give to the mpirun command in your
script.

11.4 Basic MPI Communication

While the parallel “Hello World” program used the MPI libraries, it did not make
any use of the communication features offered by these libraries. More specifically,
it did not do any message passing, which is the main feature of MPI. In this section,
we give a brief survey of some of the common communication patterns available in
the MPI library through providing a sample of the large range of available function
calls.

11.4.1 Point-to-Point Communication

The essential part of MPI functionality is being able to send a single message be-
tween processes, where one process sends while another process receives. These
two functions are called Send and Recv. Their function prototypes are:

�

void Comm::Send(const void* buf, int count,
const Datatype& datatype,
int dest, int tag) const

void Comm::Recv(void* buf, int count,
const Datatype& datatype,
int source, int tag) const

The Send method takes data on the current process from the location given
by the pointer buf. These data are assumed to be in contiguous memory (as an
array of count variables), but buf may be a pointer to a single variable. Note the
const keyword next to the buffer argument: MPI is making a guarantee not to alter
your data during the message sending. The datatype field tells the system what
the type of the data is (so that the correct number of bytes are sent in the correct
format). The last two arguments of the Send method give the destination process
number (this is the rank of the process we wish to send to) and a tag. The message
tag can be any nonnegative integer value and its purpose is to allow the user to easily
identify the context of a message. Negative tag values are reserved by the library for
special values such as MPI::ANY_TAG which is introduced below.

The Recv method has the same basic arguments: a pointer to a buffer in which
to store the message, an integer count that gives the expected number of items
in the message, the data-type for these items, the rank of the source process which

172 11 An Introduction to Parallel Programming Using MPI

is sending the message and the tag value of a message. The receiver is allowed to
use wild-cards for either the source of the message, or the message tag, or both. The
wild-card MPI::ANY_SOURCE4 is useful if, for example, we wish to receive all the
results of one phase of computation (tagged with phase_1_tag, for example) be-
fore moving on to the next phase. Messages sent with the next tag (phase_2_tag)
can then be queued until the receiving process is ready for them. The wild-card
MPI::ANY_TAG is useful if we know which process is sending the data, but do not
know what the tag will be.

The corresponding MPI Datatype signatures for the types introduced in
Chap. 1 are MPI::BOOL, MPI::CHAR, MPI::INT and MPI::DOUBLE.5 There
is no MPI type for strings because std::string is a C++ class rather than a plain
data-type. It is possible to send entire C++ classes in MPI messages by using ad-
vanced programming features to introduce user-defined data-types, but this is not
recommended. Classes can readily be transferred by packing the raw data into a
message at one end and unpacking it into a waiting class at the other end.

The following code fragment illustrates sending one message consisting of two
floating-point numbers from process 0 to process 1. Note that code involving point-
to-point communication is necessarily nonsymmetric: both processes are running
exactly the same program with the same code, but parts of the program which are
intended only for one process are placed in specific blocks guarded by their process
rank.

Listing 11.2 Example code for sending and receiving using the MPI libraries
�

1 int tag = 30;
2 if (MPI::COMM_WORLD.Get_rank() == 0)
3 {
4 //Specific send code for process 0
5 double send_buffer[2] = {100.0, 200.0};
6 MPI::COMM_WORLD.Send(send_buffer, 2,
7 MPI::DOUBLE, 1, tag);
8 }
9 if (MPI::COMM_WORLD.Get_rank() == 1)

10 {
11 //Specific receive code for process 1
12 double recv_buffer[2] = {0.0, 0.0};
13 MPI::COMM_WORLD.Recv(recv_buffer, 2, MPI::DOUBLE,
14 MPI::ANY_SOURCE, MPI::ANY_TAG);
15 std::cout << recv_buffer[0] << "\n";
16 std::cout << recv_buffer[1] << "\n";
17 }

4MPI::ANY_TAG and MPI::ANY_SOURCE are C++ names for these wild-card values. Many
codes use the interchangeable C names: MPI_ANY_TAG and MPI_ANY_SOURCE.
5Note that these are the C++ object names for these types—they are also called synonymously by
their C names: MPI_BOOL, MPI_CHAR, MPI_INT and MPI_DOUBLE.

11.4 Basic MPI Communication 173

11.4.1.1 Blocking and Buffered Sends
The default means of sending point-to-point messages with Send and Recv rep-
resents one combination in a spectrum of available communication protocols. Both
functions are known as blocking functions because they do not allow the execution
of the program to continue until it is safe to do so. The Send method not only guar-
antees that it will not change the contents of the data buffer, but that any subsequent
changes to the data buffer will not affect the message that is being sent. So if com-
putation is allowed to proceed from a Send call it either means that the message
has already been delivered or that the data has been copied into another buffer ready
for delivery.

The default Send is a compromise between the safety of waiting to be sure that
a message has been delivered and the efficiency of getting on with other tasks after
sending the message immediately. The other send functions have similar function
prototypes, but slightly different names. We briefly describe these send functions
below: the interested reader should consult a dedicated MPI programming book
[9, 10] for more details.
• The very safest, but possibly most inefficient, means of sending a message is to

use a blocking synchronous send, Ssend. This function guarantees not to con-
tinue until the message has been delivered. This is a little like delivering a mes-
sage by telephone conversation, because we cannot get on with our lives until the
call has been made and the information has been relayed.

• A slightly more configurable version is Bsend, the buffered send. Like the plain
Send, it allows the program to continue when safe, but this may happen faster
since the message is copied to a separate buffer. This buffer must be supplied and
configured by the user.

• At the top end of the spectrum, the most efficient means of sending a message is
the immediate send Isend, which returns control to the program immediately,
whether the message has been delivered, buffered or not yet acted on. This is a
little like communicating via SMS text message in which we are able to press
“send” and get on with other things safe in the knowledge that the recipient will
get the information some time soon. Because it may be dangerous to overwrite
the original data contained in the message, MPI provides functions for testing
whether or not the message has been delivered. The Isend command gives back
a handle (called an MPI::Request) which has a Wait method: this method
instructs execution to “wait here” until the message has been sent.

• There are a few other flavours of Send including compatible combinations: an
immediate send can make use of a user-supplied buffer using the buffered non-
blocking combination Ibsend.
The default Recv function is also one of a spectrum of functions. It is technically

a blocking function, because execution cannot continue until a suitable message has
been received. There is also a non blocking immediate receive Irecv together with
some utilities for probing whether there are any queued messages which match cer-
tain sources or tags. This means that your program, rather than waiting for messages
to be received, could get on with useful work, occasionally going back to check for
new information.

174 11 An Introduction to Parallel Programming Using MPI

11.4.2 Collective Communication

Code for point-to-point communication is not symmetric: one process sends while
another receives. MPI provides specialised collective calls in which all the pro-
cesses take part by executing the same commands. There are several major different
flavours of these communication patterns: the combined send-receive (where every
process sends a message to another, while also receiving a remote message); one-
to-many operations such as broadcast where data from one process are sent to the
entire group; and many-to-one operations such as reduction in which an operation
is used to combine results from all processes into a single result.

These collective calls have the advantage that they can be highly tuned in an MPI
implementation to fit the local architecture. The broadcast of a single number to
all p processes from process 0 could be achieved by sending p − 1 messages from
process 0, one message to each of the recipients. However, if process 0 sends to only
two processes who each send to two more, then the information is broadcast to all
recipients in about log2 p rounds of message sending. If a supercomputer consists
of several multicore computers connected by Ethernet, then the broadcast algorithm
can be tuned to minimise the number of Ethernet messages while possibly increasing
the number of faster messages between cores in the same machine.

11.4.2.1 Barrier
The simplest collective method is Barrier. It says that every process should wait
here until all processes are ready to proceed. Barriers are useful when you are timing
certain parts of the code, printing out information to the console, or debugging the
code.

�

1 std::cout << "Processes may arrive at any time\n";
2 std::cout.flush();
3 MPI::COMM_WORLD.Barrier();
4 std::cout << "All processes continue together\n";
5 std::cout.flush();

11.4.2.2 Combined Send and Receive
There are many cases when we might wish to send and receive many point-to-point
messages at the same point in a computation, and where every process should be
involved.

For example, consider solving a partial differential equation (PDE) using a finite
difference scheme over a regular grid (such a grid is illustrated in two dimensions
in Fig. 12.2) where the value of a variable at one position on the grid depends on
the value of that variable at a few neighbouring grid points. A similar example from
a different field is that of image processing: many image processing filters, such
as edge detection or blurring, are implemented as weighted averages of image in-
tensities over a small patch of neighbouring pixels. Such problems may be readily
parallelised by dividing the grid or image into a number of identical vertical (or

11.4 Basic MPI Communication 175

Fig. 11.3 Halo exchange
between processes

horizontal) strips and assigning one strip to each parallel process. Each process can
compute its partition independently, except at the edges where information at grid-
points or pixels assigned to the neighbouring process is required. A way to provide
this information is to keep a local copy of the required neighbouring grid-point data
and to update these data from the neighbouring process by message-passing. The
local copy of remote neighbouring data is called halo data and the message passing
process is called halo exchange.

Halo exchange is demonstrated in Fig. 11.3 using the example of an image pro-
cessing filter. This filter produces an image where the image intensity in the pro-
cessed image at a given pixel is the average of the image intensities in the original
image at five pixels: the pixel of interest; the pixel to the left; the pixel to the right;
the pixel directly above; and the pixel directly below. The pixels allocated to process
n are those in the shaded area in Fig. 11.3. We may calculate the processed image at
the pixels represented by open circles in this shaded region using only pixel inten-
sities stored by process n. Before we may calculate the filtered image at the pixels
represented by solid circles on the left edge of process n, however, we require ac-
cess to the pixels represented by solid circles on the right edge of the pixels stored
by process n-1: these pixels are referred to as the halo, and we need to copy these to
process n before we can calculate the whole processed image. Similarly, the nodes
along the left-hand boundary of process n must be copied to process n-1 before
the processed image may be calculated. This procedure of sending edge data in both
directions between processes n and n-1 is known as halo exchange. For the same
reasons, two-way halo exchange is also required between processes n and n+1.

The partitioning of data between processes should ideally minimise the amount
of data that has to be passed in halo exchanges: this is important when fine-tuning
your code to produce optimum efficiency, but is beyond the scope of this book.

For these types of problem, a more sophisticated version of point-to-point mes-
sage passing is the combined send and receive, called Sendrecv. Its function pro-
totype is:

176 11 An Introduction to Parallel Programming Using MPI

�

void Comm::Sendrecv(const void *sendbuf, int sendcount,
const Datatype& sendtype,
int dest, int sendtag,
void *recvbuf, int recvcount,
const Datatype& recvtype,
int source, int recvtag) const

Note that the ten arguments are divided into two sets of five: a set of send argu-
ments about the outgoing message and a set of receive arguments about the incom-
ing message. These are similar to the arguments given to the point-to-point versions
in Sect. 11.4.1 and they are interpreted relative to the local process: if each process
is sending to the rank above, by symmetry, each must be receiving from the rank
below. It is possible to mix the types of messages (both in terms of DataType and
the length of the messages) so that, for example, odd-ranked processes are send-
ing integer messages to the process above, but even-ranked processes are sending
double precision floating point data. In this circumstance, on any given process the
types of send and receive data will differ. As with the Recv functions, we can use
the wild-cards for the source process identity and the received message tag.

The following code shows all processes communicating in a ring. Each process
(with rank given by the variable rank) sends a message to its right-hand neighbour
(rank + 1). Modular arithmetic—see Sect. 1.4.3—ensures that the left_rank
and right_rank variables are set inside the range 0 ≤ rank < num_procs so that
the top-most process is able to send a message to the rank 0 process. This mes-
sage passing is illustrated schematically in Fig. 11.4 for four processes: the arrow
indicates the direction in which the message is passed.

�

1 int tag = 30;
2 int rank = MPI::COMM_WORLD.Get_rank();
3 int num_procs = MPI::COMM_WORLD.Get_size();
4 // left_rank is rank-1
5 // Note modular arithmetic, so that 0 has
6 // neighbour num_procs-1
7 int left_rank = (rank-1+num_procs)%num_procs;
8 int right_rank = (rank+1)%num_procs;
9 int recv_data;

10 // Communicate in a ring ...->0->1->2...
11 MPI::COMM_WORLD.Sendrecv(&rank, 1, MPI::INT,
12 right_rank, tag,
13 &recv_data, 1, MPI::INT,
14 left_rank, tag);
15 std::cout << "Process " << rank << " received from "
16 << recv_data << "\n";

There are cases, such as the halo exchange situation outlined above, where nearly
every process will send halo data from the right-hand edge of its domain up to the
next process to become a left-hand halo, but the top-most process does not need
to send any data and the bottom-most process needs no left-edge halos. This is

11.4 Basic MPI Communication 177

Fig. 11.4 Message passing between processes in a ring using combined send-receive

Fig. 11.5 Message passing between processes in a chain using combined send-receive. On process
3 the message destination is set to PROC_NULL

illustrated in Fig. 11.5 where four processes are taking part in the communication
with the arrows indicating the direction in which information is passed. In a separate
send-receive event the left-edges would also be sent down the chain to become right-
edge halos, but again there is no need to send data from the bottom-most process. For
this reason, MPI provides a special process name MPI::PROC_NULLwhich means
that this process does not participate with a send and/or receive. This process name
is illustrated in the following code, which is similar to the previous Sendrecv
example, except that there is no closed loop: the top-most process does not send to
process 0.

�

1 int tag = 30;
2 int rank = MPI::COMM_WORLD.Get_rank();
3 int num_procs = MPI::COMM_WORLD.Get_size();
4 int right_rank = rank+1;
5 // Top-most sends nowhere
6 if (rank == num_procs - 1)
7 {
8 right_rank = MPI::PROC_NULL;
9 }

10 int left_rank = rank-1;
11 // Bottom-most receives nothing
12 if (rank == 0)
13 {
14 left_rank = MPI::PROC_NULL;
15 }
16 int recv_data = 999; //This will be unchanged on proc 0
17 // Communicate 0->1->2... Final process sends nowhere
18 MPI::COMM_WORLD.Sendrecv(&rank, 1, MPI::INT,
19 right_rank, tag,
20 &recv_data, 1, MPI::INT,
21 left_rank, MPI::ANY_TAG);
22 std::cout << "Process " << rank << " received from "
23 << recv_data << "\n";

178 11 An Introduction to Parallel Programming Using MPI

11.4.2.3 Broadcast and Reduce
The collective operations broadcast and reduce are primarily one-to-many and
many-to-one operations. In a broadcast (Bcast) operation, data from one process
are shared with all other processes in the communication group. In a reduction op-
eration, all the data is concentrated to a single process. This reduction operation
is likely to be of one of a standard set available for numerical data (MPI::MAX,
MPI::MIN, MPI::SUM, and MPI::PROD). There are other predefined reduction
operations available including some bit-wise operations, and there is also opportu-
nity to define extra operations. The prototype signatures of the broadcast and re-
duce operations are given below. Note that the argument root is the source of the
broadcast but the destination of the reduction. MPI also provides a many-to-many
reduction operation Allreduce which may be thought of as a reduction operation
followed by a broadcast to all processes.

�

void Comm::Bcast(void* buffer, int count,
const MPI::Datatype& datatype,
int root) const

void Comm::Reduce(const void* sendbuf, void* recvbuf,
int count, const MPI::Datatype& datatype,
const MPI::Op& op, int root) const

An example reduction operation is given in Sect. 11.5.1 where the partial sums of
a series are summed together in a single reduction step. For now, here is a broadcast
example in which one process—process 0—mimics throwing three dice by gen-
erating integer random numbers from 1–6 inclusive, and broadcasts the results of
all three throws. Each process then adds their own rank to the value shown on the
first die, and a reduction operation reports on the maximum value attained after this
operation.

�

1 int dice[3] = {0, 0, 0};
2 //Proc 0 sets the dice (#sides)
3 if (MPI::COMM_WORLD.Get_rank() == 0)
4 {
5 for (int i=0; i<3; i++)
6 {
7 dice[i] = (rand()%6)+1;
8 }
9 }

10 //Proc 0 broadcasts
11 MPI::COMM_WORLD.Bcast(dice, 3, MPI::INT, 0);
12 //Every process adds their rank to dice[0]
13 dice[0] += MPI::COMM_WORLD.Get_rank();
14 //Reduce the first value to get the maximum
15 int max;
16 MPI::COMM_WORLD.Reduce(dice, &max, 1,
17 MPI::INT, MPI::MAX, 0);
18 //On Proc 0: max = dice[0]+MPI::COMM_WORLD.Get_size()-1

11.4 Basic MPI Communication 179

11.4.2.4 Scatter and Gather
The scatter and gather operations are extensions to broadcast and reduction oper-
ations. They are the most advanced operations which we cover in this book, and
we do so because the gather operation is useful for taking data which has been dis-
tributed across processes and concentrating it onto a single process. For example, if
a vector is split across processes in a similar manner to a PETSc vector we might
wish to write it to a file using a single write operation using only one process.6

The scatter operation Scatter is similar to the broadcast operation in that it
is one-to-many with one process being responsible for sending the message to all
other processors. Unlike the broadcast operation, where the same entries of data
(of size count) are sent to all processes, the first count elements are send to the
first process, the next count to the next and so on. MPI also provides a scatter for
variable sized data (where the count size can be different for different destinations)
which is called Scatterv.

The gather operation is similar to the reduce operation in that it is many-to-one
with each process contributing some data to the result. The difference is that the
data is not reduced but rather it is concatenated. If each process contributes count
elements of data, then the gathering process must have space to store count multi-
plied by num_procs elements. There is a variable-sized data version of the gather,
Gatherv in which the numbers of elements contributed per process may be differ-
ent. MPI also provides Allgather and Allgatherv in which the result of the
gather ends up on all the processes involved in the communication. These may be
thought of as a regular Gather or Gatherv operation followed by a broadcast.

Below are the prototype signatures of the scatter and gather operations. For com-
pleteness, we also give the signature of Allgatherv since we will demonstrate
the use of Allgather and Allgatherv in Sect. 11.5.2.

�

void Comm::Scatter(const void* sendbuf, int sendcount,
const MPI::Datatype& sendtype, void* recvbuf,
int recvcount, const MPI::Datatype& recvtype,
int root) const

void Comm::Gather(const void* sendbuf, int sendcount,
const MPI::Datatype& sendtype, void* recvbuf,
int recvcount, const MPI::Datatype& recvtype,
int root) const

void Comm::Allgatherv(const void* sendbuf, int sendcount,
const MPI::Datatype& sendtype, void* recvbuf,
const int recvcounts[], const int displs[],
const MPI::Datatype& recvtype) const

6There are a few standard ways of getting data to file from a parallel program: concentration, where
one process does all the writing, as suggested above; round-robin where processes take it in turns
to open and close the same file; parallel file libraries such as MPI’s MPIIO; and separate files
where each process writes data to different places to be re-assembled later. The choice of output
method is largely dependent on the data structure and size.

180 11 An Introduction to Parallel Programming Using MPI

Most of the arguments in the above methods should be readily understood, since
they are similar to the arguments of the previous less advanced methods. The argu-
ment root always refers the scatterer (sender) or to the gatherer (receiver). In most
cases, the types and counts of the send and receive data should be identical, with the
counts referring to the size of the array sent to (or received from) each process. In
the variable size gather, the int array arguments recvcounts and displs are
used to communicate the variable data counts and displacements for each process
(so recvcounts[rank] should be equal sendcount for that process). The
value displs[rank] contains the index in the gathered array recvbuf where
the data from process rank should begin. There is some redundancy between the
counts and displacements since one might expect the displacement of each process’
data to be equal to the sum of the counts of the data from lower ranked processes.
However, this redundancy allows there to be gaps in the gathered data.

11.5 Example MPI Applications

In this section, we give two examples of parallel programs written with MPI. The
designs of the parallel algorithms shown here are not unique to the problems which
they solve. In general, the choice of parallel algorithm depends on how it relates to
an equivalent sequential algorithm (if there is one) and how the data is partitioned.
One usually seeks to partition the data and computation between the processes in
such a way that communication between processes is minimised and that the pro-
cesses are given an equivalent amount of computational work. The task of giving
the processes the same amount of work is known as load balancing.

However, merely giving each process a similar amount of work is no guarantee
of a successful parallel algorithm if the combined computational load of parallel
processes is much more than that of the sequential program, or if communication
dominates the program. The measures of success in producing parallel programs
are parallel speedup and parallel efficiency. The parallel speedup is the ratio of the
time it takes to run the code sequentially on a certain problem to time it takes to run
on p processes (Sp = T1

Tp
). In an ideal case, a problem can be partitioned such that

it is well load balanced with minimal extra overhead, so we expect Sp 	 p. Parallel
efficiency scales this value by p: Ep = T1

pTp
so that Ep is generally in the range from

0 to 1 with 1 being the ideal value. It is rare, but not unusual, for a particular problem
to scale in parallel such that Ep > 1. This fortunate situation normally arises when
a given problem has memory constraints when run on a small numbers of processes
and it is known as super-linear speedup.

11.5.1 Summation of Series

The summation of a series can be taken as an abstraction of a range of problems
in which it is moderately easy to partition work between processes and there is
minimal communication. Such problems are termed embarrassingly parallel. In the
following example, the calculation is trivial but this case is representative of tasks

11.5 Example MPI Applications 181

which are possibly more labour intensive, such as Monte Carlo integration (see Ex-
ercise 11.4).

Consider the problem of summing a series, such as the approximation to π

π

4
=

∞∑
n=0

(−1)n

2n + 1
,

credited to Gottfried Wilhelm Leibniz. Given that we cannot compute the sum to in-
finity, we approximate this summation with a finite sum from n = 0 to n = max − 1
for some value max (which may be assumed to be divisible by the number of pro-
cesses, p). In dividing the max contributions between the processes evenly, we
might choose to allocate this work in blocks, so that the first max/p contributions
to the series go to process zero, and so on, or we might distribute in such a way
as to interleave processor contributions. In the following example, the contributions
are interleaved. Note that the only parallel communication needed in this code is a
reduction operation, which combines the subtotals from the processes into a grand
total for the entire calculation on process 0.

�

1 #include <mpi.h>
2 #include <cmath>
3 #include <iostream>
4

5 //Program to sum Pi using Leibniz formula:
6 // Pi = 4 * Sum_n ((-1)**n/(2*n+1))
7 int main(int argc, char* argv[])
8 {
9 int max_n = 1000;

10 double sum = 0;
11 MPI::Init(argc, argv);
12

13 int num_procs = MPI::COMM_WORLD.Get_size();
14 int rank = MPI::COMM_WORLD.Get_rank();
15

16 for (int n=rank; n<max_n; n+=num_procs)
17 {
18 double temp = 1.0/(2.0*((double)(n))+1.0);
19 if (n%2 == 0) // n is even
20 {
21 sum += temp;
22 }
23 else
24 {
25 // n is odd
26 sum -= temp;
27 }
28 }
29

30 double global_sum;
31 MPI::COMM_WORLD.Reduce(&sum, &global_sum, 1,
32 MPI::DOUBLE, MPI::SUM, 0);

182 11 An Introduction to Parallel Programming Using MPI

33 if (rank == 0)
34 {
35 std::cout << "Pi is about " << 4.0*global_sum
36 << " with error " << 4.0*global_sum-M_PI
37 << "\n";
38 }
39 MPI::Finalize();
40 return 0;
41 }

11.5.2 Parallel Linear Algebra

In this section, we give an outline of the operations required for performing parallel
linear algebra operations. It is beyond the scope of this book to provide a complete
parallel linear algebra library, but we outline some of the issues arising when we
design such a system. A fundamental question to ask is how matrices and vectors
might be partitioned across the processes. We choose to use the matrix-row parti-
tioning (which will be described later) favoured by the PETSc library—although
other parallel linear algebra systems, such as Mondriaan, use more sophisticated
techniques.

We begin by discussing parallel implementation of the product between a ma-
trix and a vector of suitable sizes. Using the matrix-row partitioning scheme, the
matrix-vector product v = Au where A is a N × N matrix, and u,v are vectors of
length N , can be partitioned in such a way that the first N/p rows of matrix A are
only known to process 0, as are the first N/p elements of the vectors u and v. If we
are performing a simple matrix-vector calculation using row-wise partitioning over
3 processes then it can be see from the schematic

Proc0

⎧⎨
⎩

Proc1

{

Proc2

{

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v0
v1
...

...

...

vN−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A00 A01 A02 . . . A0,N−1
A10 A11 A12 . . . A1,N−1
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...

...
. . .

. . .
. . .

...

AN−1,0 AN−1,1 AN−1,2 . . . AN−1,N−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u0
u1
...

...

...

uN−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

that in order for process 0 to compute the first N/p elements of v it is required to
know only the first N/p rows of A (which are held locally) and all the elements of
u (most of which are not local to process 0).

More generally, in order to solve the linear system Ax = b using an iterative
approach (such as the conjugate gradient method described in Sect. A.2.3) there are
a limited number of operations which will be needed:
• scalar-vector multiplication—an operation on locally-held data;

11.5 Example MPI Applications 183

• vector-vector addition and subtraction—operations on locally-held data;
• a vector Euclidean norm—a sum of squares on local data, followed by a global

sum of squares (a parallel reduction), followed by a square-root; and
• matrix-vector multiplication—in which, as outlined above, data from the vector

must be communicated between all the processes.
We illustrate an implementation of this fashion of parallel linear algebra by giv-

ing a bare-bones working MpiVector class. This class contains the features listed
below, which will aid building a parallel conjugate gradient solver.
• On constructing a vector of size N , the components are automatically distributed

between p processes. Each process is assigned N/p elements. This division may
be rounded down so that there will be a shortfall in cases where p does not di-
vide N . This shortfall is picked up by the top–most process. Each process holds
mSize elements corresponding to indices in the range mLo≤ i <mHi.

• There is an overloaded [] operator for accessing elements of the vector. This
operator converts between a global index into the vector and the local index into
the process’ private data. Any out-of-range indexing trips an assertion.

• Helper methods GetHi and GetLo enable the caller to probe the range of locally
held data, thus ameliorating the fact that the partitioning code is hidden from the
caller which would make it easy to trip index violation assertions.

• There is a CalculateNorm method which calculates the 2-norm (see
Sect. A.1.5) by calculating a local sum of squares, using reduction to sum the
local sums into a global sum, and taking the square root. Note the use of Allre-
duce which ensures that the result of the reduction (and therefore of the norm)
is available to all processes.

• There is a method UpdateGlobal for gathering all elements of the vector from
the remote processes.
The method UpdateGlobal uses more than one gather operation as introduced

in Sect. 11.4.2.4, and gathers the entire vector into private storage on every process.
The first two gather operations assemble information about the number of locally
held data and their displacements. These operations are here to illustrate a com-
mon use of fixed- and variable-sized gathers but they are redundant for multiple
reasons: (i) the sizes and displacements are fixed in constructor and do not need to
be re-calculated on every communication, (ii) the sizes and displacements are not
independent—one can be calculated from the other, (iii) the algorithm for calculat-
ing sizes and displacements in the constructor is quite simple and could be repeated
here.

�

1 #include <mpi.h>
2 #include <cmath>
3 #include <cassert>
4

5 class MpiVector
6 {
7 private:
8 //Store components
9 int mLo, mHi, mSize;

184 11 An Introduction to Parallel Programming Using MPI

10 double* mData;
11 double* mGlobalData;
12 public:
13 MpiVector(int vecSize)
14 {
15 int num_procs = MPI::COMM_WORLD.Get_size();
16 int rank = MPI::COMM_WORLD.Get_rank();
17 int ideal_local_size = vecSize/num_procs;
18

19 assert (ideal_local_size > 0);
20 mLo = ideal_local_size * rank;
21 mHi = ideal_local_size * (rank+1);
22

23 //Top processor picks up extras
24 if (rank == num_procs-1)
25 {
26 mHi = vecSize;
27 }
28 assert(mHi > mLo);
29 mData = new double[mHi - mLo];
30 mGlobalData = new double[vecSize];
31 mSize = vecSize;
32 }
33 ~MpiVector()
34 {
35 delete[] mData;
36 delete[] mGlobalData;
37 }
38

39 double& operator[](int globalIndex)
40 {
41 //Make sure that this on the local vector
42 assert(mLo<=globalIndex && globalIndex<mHi);
43 return mData[globalIndex-mLo];
44 }
45

46 int GetHi()
47 {
48 return mHi;
49 }
50

51 int GetLo()
52 {
53 return mLo;
54 }
55

56 double CalculateNorm() const
57 {
58 double local_sum = 0.0;
59 for (int i=0; i<mHi-mLo; i++)
60 {
61 local_sum += mData[i]*mData[i];
62 }

11.5 Example MPI Applications 185

63 double global_sum;
64 MPI::COMM_WORLD.Allreduce(&local_sum, &global_sum, 1,
65 MPI::DOUBLE, MPI::SUM);
66 return sqrt(global_sum);
67 }
68 void UpdateGlobal()
69 {
70 int num_procs = MPI::COMM_WORLD.Get_size();
71

72 int num_per_proc[num_procs];
73 int local_size = mHi-mLo;
74 MPI::COMM_WORLD.Allgather(&local_size, 1, MPI::INT,
75 num_per_proc, 1, MPI::INT);
76

77 int lows_per_proc[num_procs];
78 MPI::COMM_WORLD.Allgather(&mLo, 1, MPI::INT,
79 lows_per_proc, 1, MPI::INT);
80

81 MPI::COMM_WORLD.Allgatherv(mData, local_size,
82 MPI::DOUBLE, mGlobalData, num_per_proc,
83 lows_per_proc, MPI::DOUBLE);
84 }
85 };

�

1 #include <iostream>
2 #include <mpi.h>
3 #include "MpiVector.hpp"
4

5 int main(int argc, char* argv[])
6 {
7 MPI::Init(argc, argv);
8 MpiVector all_ones(9);
9 std::cout << "Local has [" << all_ones.GetLo() <<

10 ", " << all_ones.GetHi() << ")\n";
11 for (int i=all_ones.GetLo(); i<all_ones.GetHi(); i++)
12 {
13 all_ones[i] = 1.0;
14 }
15 assert(fabs(all_ones.CalculateNorm()-3.0) < 1.0e-6);
16

17 all_ones.UpdateGlobal();
18 MPI::Finalize();
19 return 0;
20 }

186 11 An Introduction to Parallel Programming Using MPI

11.6 Tips: Debugging a Parallel Program

We have discussed debugging sequential code in Sects. 1.7 and 7.7. Message passing
clearly introduces the potential for different errors to be inserted into your code. We
discuss some methods for debugging parallel programs below.

11.6.1 Tip 1: Make an Abstract Program

As with sequential programming, it is very rare for a programmer to begin building
a parallel program from scratch. In many cases, you may be given a sequential
program which has been written by someone else, or you may be starting from your
own program. At such times, it is hard to see the communication patterns underlying
the parallel code—they can easily get lost in the details of the calculations.

Our advice is to first take the time to design a rough idea of the communication
patterns needed in your new parallel program, and then start afresh. Write a simpli-
fied abstract program which concentrates on the communication, but neglects the
main calculation. This will give you the opportunity to ensure the safe working of
the parallel communication in the absence of details of the particulars. Once the
message passing is working correctly, it can easily be integrated into the main code.

11.6.2 Tip 2: Datatype Mismatch

In the following code, copied incorrectly from Listing 11.2, the process 0 block
has been amended so that the type of the data is now int and the message is sent
as MPI::INT. However, this change has not been reflected in the code for the
receiving process where the message is received as MPI::DOUBLE.

�

1 int tag = 30;
2 if (MPI::COMM_WORLD.Get_rank() == 0)
3 {
4 //Specific send code for process 0
5 int send_buffer[2] = {100, 200};
6 MPI::COMM_WORLD.Send(send_buffer, 2,
7 MPI::INT, 1, tag);
8 }
9 if (MPI::COMM_WORLD.Get_rank() == 1)

10 {
11 //Specific receive code for process 1
12 double recv_buffer[2] = {0.0, 0.0};
13 MPI::COMM_WORLD.Recv(recv_buffer, 2, MPI::DOUBLE,
14 MPI::ANY_SOURCE, MPI::ANY_TAG);
15 std::cout << recv_buffer[0] << "\n";
16 std::cout << recv_buffer[1] << "\n";
17 }

11.6 Tips: Debugging a Parallel Program 187

The message passing in this program may work correctly—in terms of the com-
munication pattern—but the data received on process 1 will probably be incorrect.
This may be because of mismatches in the size of the data (on most architectures
int uses 32 bits whereas double uses 64 bits) or it may be due to errors in the
conversion of the data.

Problems where message data types (or sizes) do not match can be hard to see,
especially when the send and receive components are in separate methods or in
separate files.

11.6.3 Tip 3: Intermittent Deadlock

Deadlock is the technical term for the situation in which all processes are waiting
for some event to happen before proceeding but no process can supply that event
because they are waiting for another process. This situation is illustrated simply
by four cars arriving simultaneously at a junction where the traffic signals have
failed: with nothing to tell them how to proceed all four drivers play safe and wait
for someone else to make the first move. In most cases, it is possible to find code
which causes deadlock by heavily instrumenting the program, that is, by printing out
lots of information and flushing the output. We will deliberately induce deadlock in
Exercise 11.2 by never receiving any sent messages so that eventually the sender is
not able to proceed because it is unable to send any more messages.

Problems involving intermittent deadlock are harder to diagnose. These are sit-
uations where the program deadlocks on some runs of the code but runs normally
on others. Perhaps the program runs without encountering problems with some triv-
ial example test input, but when it is fed with the real-life input it then deadlocks.
When this happens, it is an indication that the problem is to do with the size or tim-
ing of messages. In Exercise 11.2, we demonstrate that small amounts of data can
be buffered—which hides the fact that a non-buffered blocking send would produce
deadlock—but large amounts of data cannot be buffered. In other words, for a given
program there may be sizes and timings of messages where deadlock happens, and
some where it does not happen.

In such situations, a good strategy is to concentrate on those situations most likely
to deadlock. We make our program less efficient and more likely to deadlock by
removing buffering and asynchronous messages: replacing all instances of Send
with Ssend. Once all message passing is synchronous it is likely that the intermit-
tent deadlock has become predictable deadlock, allowing us to identify the problem
and debug the code. A program can also be made “more synchronous” by splitting
calculation steps up with barriers. The program can later be made more efficient as
necessary.

11.6.4 Tip 4: Almost Collective Communication

It is common to treat process zero as a “master process”, orchestrating the tasks of
the other processes, reducing data for output to the screen, and gathering information
from all processes for output to a single file. In these circumstances, it is usual to

188 11 An Introduction to Parallel Programming Using MPI

have some blocks of code or some methods which are only executed by the master
process and some which are only executed by the “slave processes”.

In Sect. 11.4.2.4, we gave the example of an output pattern in which all data was
concentrated onto a single process before being written to disk. In this case, process
zero may execute a block of code consisting of receives and writes to disk via an
ofstream, whereas the other processes execute a block consisting of the matching
send commands. When debugging parallel code, it is usually a good idea to add bar-
riers in order to break the program into manageable sections. However, if we were to
add barriers into the slave processes’ block of sending code, this would be a recipe
for instant deadlock. Since all processes except one are executing this code, then any
collective communication on MPI::COMM_WORLD cannot complete. If collective
communication is necessary in this code, then a new communication group (includ-
ing all processes in MPI::COMM_WORLD except rank zero) must be created.

11.7 Exercises

11.1 Amend the MpiHelloWorld program in Listing 11.1 so that the processes
print in reverse rank order. You can do this with a down-loop over processes and a
barrier. Beware that if your implementation of MPI buffers output then you might
not be able to verify that your process is working correctly!

Assuming that your loop for output is correct, now modify it to do round robin
file output. Instead of writing process ranks to std::cout each process in turn
should: open a named file, write the rank information to it and close the file. The
second process to write (and those subsequent) should not open the file until the pre-
vious process has closed it and should open the file in append mode (see Sect. 3.2).

Investigate the MPI::Wtime method (which returns a high-precision time, with
units of seconds, since some fixed point of time in the past) and use it to time the
program on each process. Use Reduce to compute the average duration of the
program over all processes.

11.2 The MPI standard allows the Send library call to behave either like a buffered
send or like a blocking send. In practice, all implementations of the MPI standard
treat Send the same way. If the message is small enough (and there is space), then
it is copied into a private buffer, and the MPI library is delegated to ensure that
the message is delivered and the program flow continues—similar to Bsend. If the
message is large (or if that private buffer is full), then delivery of the message must
wait until the recipient is ready for it, so the program flow waits—similar to Ssend.

Write an MPI program where the master process has one loop which attempts
to send larger messages each time, and then prints how big the message was. We
suggest that you double the size of the message on each iteration. All other processes
should do nothing. We suggest that you have an array of length at least a million
items, to make sure that there is always something to be sent. Eventually you should
observe deadlock.

11.7 Exercises 189

11.3 Write an MPI code following the instructions below. This code is to be exe-
cuted with only two processes, and tests the use of MPI for transferring vectors of
data between processes.
• Define an array V[10][10] to store the entries of a 10×10 matrix. The process

with rank 0 initialises its copy of the array to

V[row][col] = 10*row+col,

while the process with rank 1 initialises its copy of the array to

V[row][col] = 100+10*row+col.

This choice provides a convenient way of identifying, from the value of the entry
of V, where it has come from in the original arrays, and from which process: the
three-digit value xyz will be row y, column z from process x.

• Transfer the data stored in the first row of the matrix stored by process 0 into the
corresponding positions in the matrix stored by process 1. This involves process 0
sending the data using Send, and process 1 receiving the data using Recv. One
way of doing this on the sending side is to first copy the data into a buffer vector of
suitable length and then send this vector. Similarly, on the receiving side receive
it into a buffer vector of suitable length and then copy it into the appropriate part
of V.

• Print out the contents of the array V stored by process 1 to check that you have
correctly sent the data.

• Repeat the transfer of the first row of data without copying into a buffer on the
sender or copying from a buffer on the receiver.

• Repeat the transfer of data sending both the row with index 5 and the row with
index 8 between the processes.

• Transfer the first column of data between the processes.

11.4 The aim of this exercise is to get you started on writing algorithms with col-
lective communications. The exercise asks you to develop a parallel algorithm for
calculating an approximation to π using Monte Carlo integration.

Suppose we want to approximate the integral

∫ b

a

f (x)dx,

where f (x) is a continuous function defined at all points in the closed interval a ≤
x ≤ b. If Xi , i = 0,1,2, . . . ,N − 1 are independent random variables uniformly
distributed on the interval a ≤ x ≤ b, where N is sufficiently large, then Monte
Carlo integration allows us to approximate the integral by

∫ b

a

f (x)dx ≈ b − a

N

N−1∑
i=0

f (Xi).

190 11 An Introduction to Parallel Programming Using MPI

Noting that

π = 4
∫ 1

0

1

1 + x2
dx,

we will use Monte Carlo integration to estimate π through approximating the inte-
gral on the right-hand side of this equation. Sequential code for this is given below.

The random numbers are generated through the random number generator rand
(line 17), and seeded through srand (line 10). The random number generator re-
quires the cstdlib header to be included. The random number generator is seeded
differently on every run: in this exercise you will develop this code to run on a dis-
tributed memory machine through use of MPI statements, and you don’t want a set
of parallel computers to all work on the same set of “random” numbers.

�

1 // Compute pi using Monte Carlo integration
2 // of 1/(1+x*x) on the interval 0<=x<=1
3 #include <cmath>
4 #include <cstdlib>
5 #include <iostream>
6

7 int main(int argc, char* argv[])
8 {
9 // seed random number generator

10 srand(getpid());
11 int n_points = 1000000;
12

13 double sum = 0;
14 for (int i=0; i<n_points; i++)
15 {
16 // generate a random number on the interval 0<=x<=1
17 double x = rand()/((double)(RAND_MAX));
18 double f = 1.0/(1.0+x*x);
19 sum += f;
20 }
21 double pi = 4.0*(sum/((double)(n_points)));
22 std::cout << "Pi is approximately " << pi
23 << " with error " << pi-M_PI << ".\n";
24

25 return 0;
26 }

Compile the program and it should print out an answer similar to

Pi is approximately 3.141782 with error 0.000355562.

In the exercises below, we will add MPI function calls to enable this code to be
run in parallel.
1. Add MPI function calls so that n_points function evaluations are performed

on each of the MPI processes.

11.7 Exercises 191

2. Estimate π through reducing the result of function evaluations (sum) from each
processor to a global sum on process 0 and scaling appropriately. This is similar
to the summation of a series in Sect. 11.5.1.

3. Amend the code so that process 0 selects a value of n_points for each of the
processes at the beginning program. Pass these values out in a scatter operation.

11.5 Write classes to enable parallel linear algebra based on the row-wise matrix
partitioning—and the MpiVector class—given Sect. 11.5.2. Your goal for this
exercise should be to perform a matrix-vector multiplication in parallel.
1. Add as much functionality and overloaded operators from the Vector class

given in Sect. 10.1 to MpiVector as you wish. Include any improvements
which you may have made to Vector as part of Exercise 10.1.

2. The MpiVector constructor contains an assertion that the ideal local size (num-
ber of local vector elements) should be nonzero. This guards against the case
when the number of processes is larger than vecSize, in which case the current
code in the constructor would assign the entire vector to the top-most process.
Fix this situation so that when there are fewer vector elements than processes
every process is assigned either one or zero elements.

3. Make it possible to set elements on remote processes. A suitable scheme would
be to construct the vector in “set up” mode, during which requests to add val-
ues to remote elements are stored for later. A user is able to call a method
FinishSetUp which communicates the stored data between processes, puts
the vector in a “usable” mode and bars future attempts to set remote data.

4. Remove some of the redundant calculations performed by UpdateGlobal
mentioned in Sect. 10.1.

5. Write an output method which uses UpdateGlobal such that one process is
able to print the entire vector to screen or to file.

6. The UpdateGlobal method relies on memory for the private data member
mGlobalData being allocated in the constructor. Since the mGlobalData
is only required for output or for a matrix-vector product, the memory for
mGlobalData ought to be allocated on demand. Make sure that there is also a
method for de-allocating this memory when it is no longer needed.

7. Write an MpiMatrix class using the scheme outlined in Sect. 10.1. It is impor-
tant that you treat the partition on the number of matrix rows in exactly the same
way as the vector partition, so that local sizes are always compatible. Perform a
matrix-vector multiplication in parallel and output the solution.

12Designing Object-Oriented Numerical
Libraries

Having developed classes that underpin linear algebra operations in Chap. 10 we
now demonstrate how to construct object-oriented libraries for scientific computing
applications that utilise the functionality of these classes. We use the specific exam-
ple of developing a library that uses the finite difference method to solve boundary
value, second order differential equations.

We begin by developing a library for problems in one spatial dimension that
are linear, constant coefficient, second order, boundary value ordinary differential
equations. That is, equations of the form

A
d2u

dx2
+ B

du

dx
+ Cu = f (x), X0 < x < X1, (12.1)

where A (�= 0), B , C, X0, X1 (with X0 < X1) are given constants, f (x) is a given
function, and suitable boundary conditions are given at x = X0 and x = X1. We
choose to use the finite difference method to underpin the library as this method
for calculating the numerical solution of differential equations is the simplest to ex-
plain, and a method that many readers will be familiar with. This allows us to focus
on the implementation of this method, without a need to explain more technical
aspects of the method from a mathematical viewpoint as would be the case with
more sophisticated techniques such as the finite element method. Having discussed
how to develop a library for this class of equations we conclude this chapter by
briefly touching upon how a library for computing the numerical solution of Pois-
son’s equation may be constructed. For ease of explanation, we limit ourselves to a
two-dimensional rectangular domain, and apply only Dirichlet boundary conditions,
that is, the following partial differential equation:

∂2u

∂x2
+ ∂2u

∂y2
= f (x, y), X0 < x < X1, Y0 < y < Y1,

where X0, X1, Y0, Y1 are specified constants with X0 < X1, Y0 < Y1, f (x, y) is a
specified function, and u is specified at each point on the boundary. As partial differ-
ential equations may be beyond the mathematical scope of some readers, this section

J. Pitt-Francis, J. Whiteley, Guide to Scientific Computing in C++,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-4471-2736-9_12, © Springer-Verlag London Limited 2012

193

http://dx.doi.org/10.1007/978-1-4471-2736-9_12

194 12 Designing Object-Oriented Numerical Libraries

is entirely self-contained: the remainder of this chapter may be read independently
of the material in Sect. 12.3.

The emphasis of this chapter is to explain the object-oriented structure that may
be used when developing a library for solving differential equations. We describe
the functionality required from the classes that we use, but give very little detail
on the implementation of these classes: implementation of the ideas presented uses
C++ techniques introduced in earlier chapters, and is the focus of the exercises at
the end of the chapter. The mathematical theory of the finite difference method is
not discussed in much detail. Readers unfamiliar with this technique should consult
a suitable text such as Iserles [1], Kreyszig [2], or Süli and Mayers [3].

12.1 Developing the Library for Ordinary Differential Equations

When developing software, it is useful to know precisely what type of problems are
to be solved using this software. We therefore begin by defining two exemplar model
problems that contain all features commonly seen in linear, constant coefficient,
boundary value ordinary differential equations. We then explain the mathematical
theory behind the finite difference method for these boundary value problems, be-
fore concluding this section by explaining how to utilise the theory when developing
the library.

12.1.1 Model Problems

We use two example model problems to motivate the development of the library.
These model problems have a known solution and can therefore be used to give some
verification of the correctness of the output of the library. The first model problem
is very simple, whilst the second model problem is more complicated and uses all
the features that we will include in our library for ordinary differential equations.
Model Problem 1. The first model problem is the following boundary value prob-

lem:

d2u

dx2
= −1, 0 < x < 1,

u = 0, at x = 0,

u = 0, at x = 1.

This problem has solution

u(x) = 1

2
x(1 − x).

This is a very simple problem—we have the minimal number of terms in the dif-
ferential equation, and only very simple Dirichlet (i.e., non-derivative) boundary
conditions.

12.1 Developing the Library for Ordinary Differential Equations 195

Model Problem 2. The second model problem is a more complicated differen-
tial equation, with one Dirichlet boundary condition, and one Neumann (deriva-
tive) boundary condition. This model problem satisfies the following equation and
boundary conditions:

d2u

dx2
+ 3

du

dx
− 4u = 34 sinx, 0 < x < π,

du

dx
= −5, at x = 0,

u = 4, at x = π.

This differential equation has solution

u = 4ex + e−4x

4eπ + e−4π
− 5 sinx − 3 cosx.

12.1.2 Finite Difference Approximation to Derivatives

We now define the notation used for the finite difference approximations to the first
and second derivative of a function of one variable. Where we define a derivative
at N distinct points, we will denote these points using subscripts starting at 1 and
ending at N for consistency with the overloaded parenthesis operators used when
writing the classes of vectors and matrices developed in Chap. 10.

Let us suppose that a function u is defined on the interval X0 ≤ x ≤ X1. Suppose
further that there is a collection of points xi , i = 1,2, . . . ,N , that satisfy

x1 = X0,

x1 < x2 < x3 < · · · < xN,

xN = X1.

We will refer to the points x1, x2, . . . , xN as the finite difference grid, and the indi-
vidual points as nodes. The nodes x1 and xN are referred to as the boundary nodes
of the finite difference grid, whilst all other points are referred to as interior nodes.
We may evaluate the function u at each node xi , i = 1,2, . . . ,N , which we denote
by ui :

ui = u(xi).

The first derivative of a function at a given node may be thought of as being the
“slope” of the function at that point: i.e. the ratio of the change in u to the change
in x. In Fig. 12.1, we motivate three different approximations to the first derivative
at x = xi which are defined in Table 12.1. Note that not all of these approximations
are defined at the boundary nodes of the finite difference grid, that is, at x = x1 and
x = xN .

196 12 Designing Object-Oriented Numerical Libraries

Fig. 12.1 Backward finite
difference (broken line),
forward finite difference
(dotted line), and central
finite difference (dot-dashed
line) approximations to the
first derivative of the function
represented by the solid line
at the point x = xi

Table 12.1 Numerical finite
difference approximations to
the first derivative at x = xi

Type Formula Range

Backward (ui − ui−1) / (xi − xi−1) i = 2,3, . . . ,N

Forward (ui+1 − ui) / (xi+1 − xi) i = 1,2, . . . ,N − 1

Central (ui+1 − ui−1) / (xi+1 − xi−1) i = 2,3, . . . ,N − 1

A numerical approximation to the second derivative, not defined at the boundary
nodes of the finite difference grid, x = x1 and x = xN , is

2

xi+1 − xi−1

(
ui+1 − ui

xi+1 − xi

− ui − ui−1

xi − xi−1

)
, i = 2,3, . . . ,N − 1,

which may be written

αiui−1 + βiui + γiui+1, i = 2,3, . . . ,N − 1, (12.2)

where

αi = 2

(xi+1 − xi−1) (xi − xi−1)
, (12.3)

βi = − 2

(xi+1 − xi) (xi − xi−1)
, (12.4)

γi = 2

(xi+1 − xi−1) (xi+1 − xi)
. (12.5)

This approximation to the second derivative follows from Taylor series expansions:
see, for example, Kreyszig [2]. We note that when there is a uniform spacing be-
tween the nodes, that is, xi+1 − xi = h, i = 1,2,3, . . . ,N − 1, for some constant h,
then the approximation to the second derivative given in Eq. (12.2) may be simpli-

12.1 Developing the Library for Ordinary Differential Equations 197

fied to the more familiar formula

ui+1 − 2ui + ui−1

h2
.

When developing our classes we will use the approximation given in Eq. (12.2) as
it allows more generality.

12.1.3 Application of Finite Difference Methods to Boundary Value
Problems

We now explain how the finite difference approximations given in Sect. 12.1.2
may be used to calculate a numerical solution of the model problems given in
Sect. 12.1.1. For both problems, we use the finite difference grid with N nodes
described in Sect. 12.1.2. There are therefore N unknown values of ui to deter-
mine. We will demonstrate how to set up a linear system of size N that allows us to
calculate these values.

12.1.3.1 Model Problem 1
Substituting the approximation to second derivative given by Eq. (12.2) into the
differential equation at the interior nodes of the finite difference grid yields

αiui−1 + βiui + γiui+1 = −1, i = 2,3, . . . ,N − 1. (12.6)

The boundary conditions imply that

u1 = uN = 0. (12.7)

Equations (12.6) and (12.7) may be combined and written as the linear system
Au = b, where A is a N × N matrix, and u and b are vectors of length N . The
entries of A, u and b are then given by

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0 0 0
α2 β2 γ2 . . . 0 0 0
0 α3 β3 . . . 0 0 0
0 0 α4 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . αN−1 βN−1 γN−1
0 0 0 . . . 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

198 12 Designing Object-Oriented Numerical Libraries

u =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1
u2
u3
u4
...

uN−2
uN−1
uN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
−1
−1
−1
...

−1
−1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Now that we have written the model problem as a linear system, we may use the
methods associated with the vector, matrix and linear system classes to solve this
system and calculate the values of ui , i = 1,2, . . . ,N .

12.1.3.2 Model Problem 2
We now write model problem 2 in matrix form. At the interior nodes of the finite
difference grid, we use a central approximation to the first derivative, as defined in
Table 12.1, and the approximation to the second derivative given by Eq. (12.2). The
differential equation may then be approximated by, for i = 2,3, . . . ,N − 1,

(
αi − 3

xi+1 − xi−1

)
ui−1 + (βi − 4)ui +

(
γi + 3

xi+1 − xi−1

)
ui+1

= 34 sinxi. (12.8)

The boundary condition at x = π may be implemented in the same way as the
Dirichlet boundary conditions in model problem 1, that is, we write

uN = 4. (12.9)

The Neumann (derivative) boundary condition at x = 0 requires a bit more thought.
We see from Table 12.1 that the only one of these approximations to the first deriva-
tive that is defined at the node x1 is the forward approximation. We therefore use
this approximation and implement this boundary condition by setting

− 1

x2 − x1
u1 + 1

x2 − x1
u2 = −5. (12.10)

Defining, for i = 2,3, . . . ,N − 1, the quantities α̂i , β̂i , γ̂i :

α̂i = αi − 3

xi+1 − xi−1
,

β̂i = βi − 4,

γ̂i = γi + 3

xi+1 − xi−1
,

12.1 Developing the Library for Ordinary Differential Equations 199

we may write Eqs. (12.8), (12.9) and (12.10) as the linear system Au = b, where the
entries of A and b are given by

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1/ (x2 − x1) 1/ (x2 − x1) 0 . . . 0 0 0

α̂2 β̂2 γ̂2 . . . 0 0 0

0 α̂3 β̂3 . . . 0 0 0

0 0 α̂4 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . α̂N−1 β̂N−1 γ̂N−1

0 0 0 . . . 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

u =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1
u2
u3
u4
...

uN−2
uN−1
uN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−5
34 sin(x2)

34 sin(x3)

34 sin(x4)
...

34 sin(xN−2)

34 sin(xN−1)

4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

As with model problem 1 we may now use the linear system class already written
to solve this linear system.

12.1.4 Concluding Remarks on Boundary Value Problems in One
Dimension

We have now explained how to write the finite difference approximation to a linear,
constant coefficient, second order boundary value problem in matrix notation, thus
allowing the classes of vectors, matrices and linear systems developed in Chap. 10 to
be used to calculate the finite difference approximation. In the next section, we will
describe an object-oriented structure that allows a very general library for solving
such problems to be developed. We should, however, discuss the limitations of this
library.

Suppose we want to solve the following equation:

d2u

dx2
+ u = 0, 0 < x < 2π,

u = 0, at x = 0,

u = 0, at x = 2π.

200 12 Designing Object-Oriented Numerical Libraries

This has solution u = sinx, and it may be thought that the library we are writing
may be used to solve this problem. However u = A sinx, where A is any constant
value, satisfies the differential equation and both boundary conditions: that is, the
solution is not unique.

The equation above has a non-unique solution. It is also possible that an equation
of the form Eq. (12.1) has no solution. For example, consider the equation

d2u

dx2
+ u = 0, 0 < x < 2π,

u = 1, at x = 0,

u = 4, at x = 2π.

It can be shown that this equation together with these boundary conditions has no
solution.

Proof of existence and uniqueness of solutions to boundary value differential
equations is beyond the scope of this book. Nevertheless, the reader should be aware
when using this library that some equations have solutions that are not unique, and
solutions do not exist for other equations.

12.2 Designing a Library for Solving Boundary Value Problems

To calculate a numerical solution of the boundary value ordinary differential equa-
tions discussed above, we may specify the problem by specifying individually:
(i) the ordinary differential equation and the interval on which the solution is
valid; (ii) the boundary conditions; and (iii) the finite difference grid. Classes
will be written for these three entities, called SecondOrderOde, Boundary-
Conditions and FiniteDifferenceGrid. These will then all be members
of a class BvpOde that encapsulates a boundary value ordinary differential equa-
tion, and contains all the functionality required for the numerical solution of the
differential equation. We now discuss the individual classes.

12.2.1 The Class SecondOrderOde

To specify the ordinary differential equation, we need to specify the coefficients on
the left-hand side of Eq. (12.1), the function on the right-hand side of this equation,
and the interval on which the equation is valid. These will all be made members of
the class SecondOrderOde. To ensure that all of these are specified, we will only
allow a user to use a constructor that specifies all of these members. In the exercises
at the end of this chapter, we will discuss developing other constructors. A header
file for this class is given below.

12.2 Designing a Library for Solving Boundary Value Problems 201

Listing 12.1 SecondOrderOde.hpp
�

1 #ifndef SECONDORDERODEHEADERDEF
2 #define SECONDORDERODEHEADERDEF
3

4 class SecondOrderOde
5 {
6 // The boundary value class is able to
7 // access the coefficients etc. of this equation
8 friend class BvpOde;
9 private:

10 // Coefficients on LHS of ODE
11 double mCoeffOfUxx;
12 double mCoeffOfUx;
13 double mCoeffOfU;
14 // Function on RHS of ODE
15 double (*mpRhsFunc)(double x);
16

17 // Interval for domain
18 double mXmin;
19 double mXmax;
20 public:
21 SecondOrderOde(double coeffUxx, double coeffUx,
22 double coeffU,
23 double (*righthandSide)(double),
24 double xMinimum, double xMaximum)
25 {
26 mCoeffOfUxx = coeffUxx;
27 mCoeffOfUx = coeffUx;
28 mCoeffOfU = coeffU;
29 mpRhsFunc = righthandSide;
30 mXmin = xMinimum;
31 mXmax = xMaximum;
32 }
33 };
34

35 #endif

12.2.2 The Class BoundaryConditions

On the left boundary, we may specify either the value of the function u (a left Dirich-
let boundary condition), or the derivative du/dx (a left Neumann boundary condi-
tion). It is important to note that there must be either a left Dirichlet boundary con-
dition or a left Neumann boundary condition: we must have one of these boundary
conditions but we cannot have both. Similarly, on the right boundary we must have
either a right Dirichlet boundary condition or a right Neumann boundary condition.
In the class BoundaryConditions, we will declare class members mLhsBc-
IsDirichlet, mRhsBcIsDirichlet, mLhsBcIsNeumann, mRhsBcIs-

202 12 Designing Object-Oriented Numerical Libraries

Neumann that are Boolean variables, thus allowing us to check that we have pre-
cisely one boundary condition on the left-hand boundary, and precisely one bound-
ary condition on the right boundary. The default constructor should be overridden
to set these variables to the value “false” in the absence of any other instruc-
tion. Whatever type of boundary conditions are set, values for these are needed
at either end of the interval. These class members are called mLhsBcValue and
mRhsBcValue. Finally, we require methods to set these values, and set the appro-
priate Boolean variable to the value “true”. The method SetLhsDirichlet-
Bc takes a double precision floating point variable as input. It sets the member
variable mLhsBcValue to this input, and sets the Boolean variable mLhsBc-
IsDirichlet to the value true. The methods SetRhsDirichletBc, Set-
LhsNeumannBc and SetRhsNeumannBc perform similar tasks.

The header file BoundaryConditions.hpp is shown below.

Listing 12.2 BoundaryConditions.hpp
�

1 #ifndef BOUNDARYCONDITIONSHEADERDEF
2 #define BOUNDARYCONDITIONSHEADERDEF
3

4 class BoundaryConditions
5 {
6 public:
7 // The boundary value class is able to
8 // access the coefficients etc. of this equation
9 friend class BvpOde;

10 private:
11 bool mLhsBcIsDirichlet;
12 bool mRhsBcIsDirichlet;
13 bool mLhsBcIsNeumann;
14 bool mRhsBcIsNeumann;
15 double mLhsBcValue;
16 double mRhsBcValue;
17 public:
18 BoundaryConditions();
19 void SetLhsDirichletBc(double lhsValue);
20 void SetRhsDirichletBc(double rhsValue);
21 void SetLhsNeumannBc(double lhsDerivValue);
22 void SetRhsNeumannBc(double rhsDerivValue);
23 };
24

25 #endif

12.2.3 The Class FiniteDifferenceGrid

The finite difference grid requires access to the interval on which the equation is
valid, given in the class SecondOrderOde. To create a uniform grid, we also
need specification of the number of nodes. To ensure that the number of nodes is

12.2 Designing a Library for Solving Boundary Value Problems 203

specified, we only allow use of a constructor that sets this through a constructor
argument. A vector of uniformly spaced nodes can then be generated. We create
a class Node that stores the coordinate of each node. Header files for the classes
FiniteDifferenceGrid and Node are given below.

Listing 12.3 Node.hpp
�

1 #ifndef NODEHEADERDEF
2 #define NODEHEADERDEF
3

4 class Node
5 {
6 public:
7 double coordinate;
8 };
9

10 #endif

Listing 12.4 FiniteDifferenceGrid.hpp
�

1 #ifndef FINITEDIFFERENCEGRIDHEADERDEF
2 #define FINITEDIFFERENCEGRIDHEADERDEF
3 #include <vector>
4 #include "Node.hpp"
5

6 class FiniteDifferenceGrid
7 {
8 public:
9 // The boundary value class is able to

10 // access the nodes
11 friend class BvpOde;
12 private:
13 std::vector<Node> mNodes;
14 public:
15 FiniteDifferenceGrid(int numNodes, double xMin,
16 double xMax);
17 };
18

19 #endif

12.2.4 The Class BvpOde

Now we have described the classes SecondOrderOde, BoundaryCondi-
tions and FiniteDifferenceGrid we may develop the class BvpOde. We
only allow this class to be instantiated through a constructor that specifies: (i) an
instance of the class SecondOrderOde; (ii) an instance of the class Boundary-
Conditions; and (iii) the number of nodes to be used in the finite difference

204 12 Designing Object-Oriented Numerical Libraries

grid. Once these entities have been specified we then create an instance of the class
FiniteDifferenceGrid, a vector that will contain the solution, a vector that
will be on the right-hand side of a linear system, and a matrix associated with the
linear system. Methods will then be written to populate both the matrix and the
vector associated with the linear system, and to apply the boundary conditions, as
discussed in Sect. 12.1.3. Finally, methods will be written to solve the linear system,
and to write the solution to file. A header file BvpOde.hpp is given below.

Listing 12.5 BvpOde.hpp
�

1 #ifndef BVPODEHEADERDEF
2 #define BVPODEHEADERDEF
3

4 #include <string>
5 #include "Matrix.hpp"
6 #include "Vector.hpp"
7 #include "LinearSystem.hpp"
8 #include "FiniteDifferenceGrid.hpp"
9 #include "SecondOrderOde.hpp"

10 #include "BoundaryConditions.hpp"
11

12 class BvpOde
13 {
14 private:
15 // Only allow instance to be created from a PDE, boundary
16 // conditions, and number of nodes in the mesh (the
17 // copy constructor is private)
18 BvpOde(const BvpOde& otherBvpOde){}
19

20 // Number of nodes in the grid, and a pointer to a grid
21 int mNumNodes;
22 FiniteDifferenceGrid* mpGrid;
23

24 // Pointer to instance of an ODE
25 SecondOrderOde* mpOde;
26

27 // Pointer to an instance of boundary conditions
28 BoundaryConditions* mpBconds;
29

30 // Vector for solution to unknowns
31 Vector* mpSolVec;
32

33 // Right-hand side vector
34 Vector* mpRhsVec;
35

36 // Matrix for linear system
37 Matrix* mpLhsMat;
38

39 // Linear system that arises
40 LinearSystem* mpLinearSystem;

12.3 Extending the Library to Two Dimensions 205

�

41

42 // Allow user to specify the output file or
43 // use a default name
44 std::string mFilename;
45

46 // Methods for setting up linear system and solving it
47 void PopulateMatrix();
48 void PopulateVector();
49 void ApplyBoundaryConditions();
50

51 public:
52 // Sole constructor
53 BvpOde(SecondOrderOde* pOde, BoundaryConditions* pBcs,
54 int numNodes);
55

56 // As memory is dynamically allocated the destructor
57 // is overridden
58 ~BvpOde();
59

60 void SetFilename(const std::string& name)
61 {
62 mFilename = name;
63 }
64 void Solve();
65 void WriteSolutionFile();
66 };
67

68 #endif

12.2.5 Using the Class BvpOde

When using the classes introduced above, we would like to write code such as that
in Listing 12.6 to calculate a numerical solution of the model problems given in
Sect. 12.1.1. This will form the basis for the exercises at the end of this chapter.

12.3 Extending the Library to Two Dimensions

In this section, we assume that the reader is familiar with partial differentiation: that
is, if a differentiable function u(x, y) depends on the variables x and y then partial
derivatives with respect to both x and y may be calculated. Readers unfamiliar with
partial differential equations may wish to skip this section or consult a suitable text
on mathematical methods such as Kreyszig [2].

In the previous section, we designed a library for calculating the finite difference
solution of linear, constant coefficient, second order, boundary value ordinary differ-
ential equations. We will now explain how a library may be developed for the finite

206 12 Designing Object-Oriented Numerical Libraries

Listing 12.6 Driver.cpp for testing the code in Sect. 12.2 on the model problems discussed
in Sect. 12.1.1

�

1 #include <cmath>
2 #include <string>
3 #include "BvpOde.hpp"
4

5 double model_prob_1_rhs(double x){return 1.0;}
6 double model_prob_2_rhs(double x){return 34.0*sin(x);}
7

8 int main(int argc, char* argv[])
9 {

10 SecondOrderOde ode_mp1(-1.0, 0.0, 0.0,
11 model_prob_1_rhs,
12 0.0, 1.0);
13 BoundaryConditions bc_mp1;
14 bc_mp1.SetLhsDirichletBc(0.0);
15 bc_mp1.SetRhsDirichletBc(0.0);
16

17 BvpOde bvpode_mp1(&ode_mp1, &bc_mp1, 101);
18 bvpode_mp1.SetFilename("model_problem_results1.dat");
19 bvpode_mp1.Solve();
20

21 SecondOrderOde ode_mp2(1.0, 3.0, -4.0,
22 model_prob_2_rhs,
23 0.0, M_PI);
24 BoundaryConditions bc_mp2;
25 bc_mp2.SetLhsNeumannBc(-5.0);
26 bc_mp2.SetRhsDirichletBc(4.0);
27

28 BvpOde bvpode_mp2(&ode_mp2, &bc_mp2, 1001);
29 bvpode_mp2.SetFilename("model_problem_results2.dat");
30 bvpode_mp2.Solve();
31

32 return 0;
33 }

difference solution of Poisson’s equation in two spatial dimensions on a rectangular
domain, with Dirichlet boundary conditions, that is, equations of the form

∂2u

∂x2
+ ∂2u

∂y2
= f (x, y), X0 < x < X1, Y0 < y < Y1,

where X0, X1, Y0, Y1 are specified constants, f (x, y) is a specified function, and
boundary conditions for u are given at each point on the boundary of the rectangular
domain specified.

12.3 Extending the Library to Two Dimensions 207

12.3.1 Model Problem for Two Dimensions

As with ordinary differential equations earlier in this chapter, we will use a model
problem to demonstrate the implementation of the finite difference method. The
model problem that we will use is

∂2u

∂x2
+ ∂2u

∂y2
= −4

(
1 − x2 − y2)e−(x2+y2), 0 < x < 1, 0 < y < 2, (12.11)

u = e−y2
, x = 0, 0 < y < 2, (12.12)

u = e−(1+y2), x = 1, 0 < y < 2, (12.13)

u = e−x2
, 0 < x < 1, y = 0, (12.14)

u = e−(4+x2), 0 < x < 1, y = 2. (12.15)

This model problem has solution

u = e−(x2+y2).

12.3.2 Finite Difference Methods for Boundary Value Problems in
Two Dimensions

To define the finite differences that approximate the partial derivatives of a function
in two dimensions, we first need to define a finite difference grid. We have already
stated that we are assuming that the function u that is to be determined satisfies a
partial differential equation defined on the region X0 ≤ x ≤ X1, Y0 ≤ y ≤ Y1. We
now suppose that there are points xi , i = 1,2, . . . ,M and yj , j = 1,2, . . . ,N such
that

x1 = X0,

x1 < x2 < x3 < · · · < xM,

xM = X1,

y1 = Y0,

y1 < y2 < y3 < · · · < yN,

yN = Y1.

The nodes of the finite difference grid are then the points (xi, yj), i = 1,2, . . . ,M ,
j = 1,2, . . . ,N . The boundary nodes are the nodes where x = X0, x = X1, y = Y0
or y = Y1. All other nodes are interior nodes. An example mesh on the square 0 <

x < 1, 0 < y < 2 is shown in Fig. 12.2, where the filled circles denote the boundary
nodes, and the open circles denote the interior nodes.

208 12 Designing Object-Oriented Numerical Libraries

Fig. 12.2 A suitable finite
difference grid in two
dimensions. Boundary nodes
are denoted by a filled circle,
interior nodes by a hollow
circle

Fig. 12.3 Node i and points
used to calculate finite
difference approximations in
two dimensions

Numbering of the nodes for a finite difference grid is slightly more complicated
in two dimensions than it was in one dimension. For the finite difference grid in one
dimension all nodes could be numbered consecutively, allowing the finite difference
approximations to be written down in an intuitive way. To write down finite differ-
ence approximations in two dimensions, we will adopt the “compass point” notation
shown in Fig. 12.3. The node immediately above node i in the computational mesh
is denoted by i,N , where “N” corresponds to north. The other nodes that are ad-
jacent to node i are the east, south and west nodes, denoted by “i,E”, “i, S” and
“i,W ” respectively.

12.3 Extending the Library to Two Dimensions 209

Provided i is an interior node, the four adjacent nodes shown in Fig. 12.3 all
exist. Finite differences to the derivatives that appear in Poisson’s equation are given
below.

∂2u

∂x2
≈ 2

xi,E − xi,W

(
ui,E − ui

xi,E − xi

− ui − ui,W

xi − xi,W

)
, (12.16)

∂2u

∂y2
≈ 2

yi,N − yi,S

(
ui,N − ui

yi,N − yi

− ui − ui,S

yi − yi,S

)
. (12.17)

We will now explain how these finite difference approximations may be used to set
up a linear system to calculate the numerical solution of Poisson’s equation.

12.3.3 Setting Up the Linear System for the Model Problem

We will now apply the theory developed in Sect. 12.3.2 to the model problem de-
scribed in Sect. 12.3.1. Using the finite difference grid described in Sect. 12.3.2, we
have M nodes in the x-direction, and N nodes in the y-direction: that is, a total of
M × N nodes. Each of these nodes has an unknown value of u, and so our linear
system comprises M × N equations, with each equation being associated with one
node of the mesh.

At interior nodes we may substitute the finite difference approximations given
in Eqs. (12.16) and (12.17). Substituting these approximation into Eq. (12.11) and
rearranging yields

αiui + αi,Nui,N + αi,Eui,E + αi,Sui,S + αi,Wui,W = bi, (12.18)

where

αi = − 2

(xi,E − xi)(xi − xi,W)
− 2

(yi,N − yi)(yi − yi,S)
,

αi,N = 2

(yi,N − yi,S)(yi,N − yi)
,

αi,E = 2

(xi,E − xi,W)(xi,E − xi)
,

αi,S = 2

(yi,N − yi,S)(yi − yi,S)
,

αi,W = 2

(xi,E − xi,W)(xi − xi,W)
,

bi = −4
(
1 − x2

i − y2
i

)
e−(x2

i +y2
i).

210 12 Designing Object-Oriented Numerical Libraries

The value of u at each boundary node is given by the appropriate equation from
Eqs. (12.12)–(12.15). This may be incorporated into the linear system by the equa-
tion

ui = bi, (12.19)

where i is a boundary node, and bi is the value that u takes at that node.
Equations (12.18) and (12.19) fully define the linear system. We may now use

the functionality of the classes of vectors, matrices and linear systems developed in
Chap. 10 to calculate the value of the finite difference approximation to u at each
node.

12.3.4 Developing the Classes Required

We give only minimal guidance on developing the classes required for calculating a
numerical solution of Poisson’s equation. Designing and implementing these classes
is left as an Exercise (Problem 12.4). Our suggestions are given below.
• Creating an instance of the class FiniteDifferenceGrid should require the

use of a constructor that specifies the number of nodes in the x direction and the
number of nodes in the y direction. The grid should consist of a vector of bound-
ary nodes that are all instances of the class BoundaryNode (discussed below)
and a vector of interior nodes that are all members of the class InteriorNode
(also discussed below). Each of the nodes in the mesh should have a global num-
bering that will refer to the row number of the matrix that will correspond to the
unknown value of u at that node, ui .

• An instance of the class BoundaryNode will have an integer representing the
global numbering, and a double precision floating point variable that represents
the value of u at that node from the boundary conditions.

• An instance of the class InteriorNode will have an integer representing the
global numbering, and the global numbers of the north node, east node, south
node and west node: see Fig. 12.3 for a definition of these nodes.
The classes described above, together with a class for encapsulating the partial

differential equation that is similar to SecondOrderOde in Sect. 12.2, should
enable code to be written to calculate the numerical solution of Poisson’s equation.

12.4 Tips: Using Well-Written Libraries

In Chap. 10, we developed a linear system class that was based on classes of vectors
and matrices. These classes allowed us to perform various linear algebra operations.
In this chapter, we utilised these classes to allow us to develop libraries for calculat-
ing the numerical solution of differential equations.

Although the classes developed in Chap. 10 do have sufficient functionality for
the purpose of this chapter, we would recommend that a reader who requires a lin-
ear algebra library should consider using one of the many high quality, open-source

12.5 Exercises 211

libraries that are available. (Indeed, in Sect. 1.1.2, we gave the fact that there is
a wealth of numerical libraries for scientific computing as one of the reasons for
learning C++.) Libraries for linear algebra usually include significantly more func-
tionality than that developed here including, for example: sparse matrices; a wide
variety of iterative linear solvers; a wide variety of preconditioners; interfaces with
other packages; and support for parallelisation. Indeed, as linear algebra is such a
fundamental topic at the core of scientific computing, it is unlikely that any func-
tionality required will not be included in a widely used library. Furthermore, such
libraries have the advantage of being well-tested, optimised code and can, as such,
be treated as a black box.

One open-source library that is of particular use is the Portable Extensible Toolkit
for Scientific Computing (PETSc, pronounced “pet see”) which is available for
download from http://www.mcs.anl.gov/petsc/. Libraries such as PETSc include an
extremely large amount of functionality for systems of both linear and nonlinear
equations, with support for parallel implementation on distributed memory archi-
tectures through the MPI library.

We conclude this section by reminding the reader of our the remarks in
Sect. 1.1.4. We explained in that section that this book focuses on aspects of the
C++ programming language that are commonly needed when writing software for
scientific computing applications. As such, we haven’t touched on the functionality
of the language that is rarely required in this field. Should readers wish to develop
their C++ skills to use more advanced features we have given a list of suitable
references in the Further Reading at the end of this book [5–10].

12.5 Exercises

12.1 Develop the classes described in Sect. 12.2 for second order, constant coef-
ficient, linear boundary value ordinary differential equations. Test these libraries
using the model problems described in Sect. 12.1.1. The code in Listing 12.6
which produces output files that can be readily plotted may be used as a frame-
work. Example solutions for this problem are given in Sect. C.2: these files,
together with the header files given in this chapter, may be downloaded from
http://www.springer.com/978-1-4471-2735-2.

Make sure that the BvpOde method WriteSolutionFile does not attempt
to write a file if mFilename is uninitialised or set to an empty string. (This may be
achieved by setting mFilename to a safe value in the constructor.)

12.2 Extend the library developed in Problem 12.1 so that the user may specify a
nonuniform finite difference grid. Allow this to be done through a method SetGrid
of the class FiniteDifferenceGrid that allows a mesh to be specified as a
vector of ordered nodes. Ensure that the boundary nodes have the same value as
mXmin and mXmax in the class SecondOrderOde.

http://www.mcs.anl.gov/petsc/
http://www.springer.com/978-1-4471-2735-2

212 12 Designing Object-Oriented Numerical Libraries

12.3 Some programmers may feel that the constructor given in Listing 12.1 is in-
adequate. They may argue that it would be easy to incorrectly assign one of the
coefficients of the equation. One way around this would be to force the user to
use a default constructor. Additional class members, such as a Boolean variable
mCoeffOfUxxIsSet could be deployed. The default constructor would be over-
ridden so that these variables were set to false when the constructor was called.
A method called SetCoefficientOfUxx would then be written, which would
have as input the coefficient of d2u/dx2. This method would assign the coefficient
correctly and set the Boolean variable mCoeffOfUxxIsSet to true. Before the
methods that calculate the numerical solution are called a check would be carried out
to ensure that all required data has been assigned. Design, and implement, classes
to specify the differential equation in this way.

12.4 If you understand the theory for finite difference methods for Poisson’s equa-
tion given in Sect. 12.3.2, develop a library for solving such equations. Test this
library using the model problem described in Sect. 12.3.1.

ALinear Algebra

This appendix summarises the linear algebra that underpins the classes of vectors
and matrices developed in this book. We present little more than the algorithms
used: a reader interested in a deeper understanding of this theory should consult a
textbook such as one of those listed in the Further Reading section at the end of this
book.

A.1 Vectors and Matrices

For the purpose of this book, a vector is a one-dimensional array and a matrix is a
two-dimensional array: it is—of course—possible to work only with matrices, with
vectors having either only one column or only one row. For consistency with the
classes of vectors and matrices developed, we treat vectors and matrices as separate
entities in this discussion.

In this Appendix, we use mathematical rather than C++ notation for vectors and
matrices. We will use italics to denote a scalar. Vectors will be denoted by lower case
bold font letters. Individual entries of a vector will be denoted by italics indexed by
subscripts. For example, v represents a vector, and the entry of v with index i is
denoted by vi . For consistency with C++ coding, we index the vectors and matrices
in this Appendix so that the indices begin from 0. We assume that all vectors are
column vectors: that is, a vector v of length N is the vector

v =

⎛
⎜⎜⎜⎝

v0
v1
...

vN−1

⎞
⎟⎟⎟⎠ .

If a row vector is required, it is denoted using the transpose superscript that is, v�.
Matrices will be denoted by upper case bold font letters, with italics indexed by
subscripts used to denote the entries of the matrix. The first index corresponds to
the row number and the second index corresponds to the column number. Using this
notation, if A is a matrix, then the entry of A that appears in the row with index i

and the column with index j is denoted by Aij . Where required for clarity, we will
separate the indices by a comma, for example Ai+1,j−1.

J. Pitt-Francis, J. Whiteley, Guide to Scientific Computing in C++,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-4471-2736-9, © Springer-Verlag London Limited 2012

213

http://dx.doi.org/10.1007/978-1-4471-2736-9

214 A Linear Algebra

A square matrix of size N has both N rows and N columns. The identity matrix
of size N is a square matrix, denoted by I(N), with entries given by

I
(N)
ij =

{
1, i = j,

0, i �= j.

A.1.1 Operations Between Vectors and Matrices

Linear combinations of vectors. Suppose w = αu + βv, where u,v,w are all vec-
tors of length N , and α,β are scalars. The entries of w are given by

wi = αui + βvi, i = 0,1, . . . ,N − 1.

Linear combinations of matrices. Suppose C = αA + βB, where A,B,C are all
matrices with M rows and N columns, and α,β are scalars. The entries of C are
given by

Cij = αAij + βBij , i = 0,1, . . . ,M − 1, j = 0,1, . . . ,N − 1.

Multiplication of a matrix by a vector. Suppose A is a matrix with M rows and N

columns, and u is a vector of length N . If v = Au, then v is a vector of length M

with entries given by

vi =
N−1∑
j=0

Aijuj , i = 0,1, . . . ,M − 1.

Similarly, if s is a vector of length M and t� = s�A, then t is a vector of length N

with entries given by

tj =
M−1∑
i=0

siAij , j = 0,1, . . . ,N − 1.

Multiplication of a matrix by a matrix. Suppose A is a matrix with L rows and M

columns, and B is a matrix with M rows and N columns. If the matrix C satisfies
C = AB, then C has L rows and N columns, and has entries given by

Cij =
M−1∑
k=0

AikBkj , i = 0,1, . . . ,L − 1, j = 0,1, . . . ,N − 1.

The transpose of a matrix. Suppose A is a matrix with M rows and N columns. If
the matrix B satisfies B = A�, then B has N rows and M columns with entries
given by

Bij = Aji, i = 0,1, . . . ,N − 1, j = 0,1, . . . ,M − 1.

A matrix A is said to be symmetric if A = A�.

A.1 Vectors and Matrices 215

A.1.2 The Scalar Product of Two Vectors

Suppose v and w are both vectors of length N . The scalar product between v and
w, denoted by v · w, is given by

v · w =
N−1∑
i=0

viwi. (A.1)

A.1.3 The Determinant and the Inverse of a Matrix

The simplest way to specify the determinant of a square matrix of general size is
to use recursion.1 Suppose A is a square matrix of size N . The determinant of A,
denoted by det(A), may be written

det(A) = a00 det
(
Â(00)

) − a01 det
(
Â(01)

) + a02 det
(
Â(02)

) − a03 det
(
Â(03)

) + · · ·
+ (−1)N−1a0,N−1 det

(
Â(0,N−1)

)
,

where the square matrix Â(ij), of size N − 1, is the matrix A with row i and column
j removed. This definition allows us to express the determinant of a square matrix of
size N as a sum of determinants of square matrices of size N − 1. This process may
be repeated recursively until the determinant is expressed as a sum of determinants
of square matrices of size 1. To complete this definition, we need to define the
determinant of a square matrix of size 1: under these conditions det(A) = a00. We
leave it to the reader to verify that this definition is consistent with the commonly
used expressions for the determinant of matrices of sizes 2 and 3.

If the determinant of a square matrix A of size N is nonzero, then A is said to be
invertible: a unique inverse matrix—denoted by A−1—exists, and satisfies

A−1A = AA−1 = I(N).

For the square matrix A of size 2 given by

A =
(

a b

c d

)
,

then provided the determinant, given by ad − bc is nonzero, then A−1 exists and is
given by

A−1 = 1

ad − bc

(
d −b

−c a

)
.

1This recursion may be mapped directly into recursive functions (discussed in Sect. 5.8) when
programming. However, it is generally more efficient to hard-code commonly used determinants
for small matrices such as 2 × 2 and 3 × 3.

216 A Linear Algebra

A.1.4 Eigenvalues and Eigenvectors of a Matrix

Suppose A is a square matrix of size N . The scalar λ is said to be an eigenvalue of
A if

det
(
A − λI(N)

) = 0.

If λ is an eigenvalue of A then a family of nonzero vectors2 v that satisfy Av = λv
exists: each v in this family is then said to be an eigenvector corresponding to the
eigenvalue λ.

A.1.5 Vector and Matrix Norms

Suppose v is a vector of length N . The p-norm of v, denoted by ‖v‖p , is given by

‖v‖p =
(

N−1∑
i=0

|vi |p
)1/p

. (A.2)

Taking the limit as p → ∞, this definition yields

‖v‖∞ = N−1
max
i=0

|vi |.

Of most use is the 2-norm: this is known as the Euclidean norm, and corresponds
to the length of the line that represents a vector in two or three dimensions. Using
Eq. (A.1), and Eq. (A.2) with p = 2, we see that we may write the 2-norm as

‖v‖2 =
√√√√N−1∑

i=0

v2
i = √

v · v.

The p-norm of a matrix A, denoted by ‖A‖p , is given (in terms of the vector
p-norm) by

‖A‖p = max
v�=0

‖Av‖p

‖v‖p

.

In common with vector norms, the most commonly used norm is the 2-norm. It can
be shown that the eigenvalues of the matrix A�A are all real and nonnegative. Let
λ be the largest of these eigenvalues. Then ‖A‖2 = √

λ.

2A vector v satisfies v = 0 if, and only if, all entries of this vector take the value 0: v is then said
to be a zero vector. If not, v is said to be a nonzero vector.

A.2 Systems of Linear Equations 217

A.2 Systems of Linear Equations

Many algorithms in scientific computing require the solution of linear systems of
the form Ax = b, where: (i) A is a square, invertible matrix of size N ; (ii) the vec-
tors x,b are both of length N ; (iii) A,b are known; and (iv) x is to be calculated.
Clearly x satisfies x = A−1b. However, calculating A−1 is extremely computation-
ally expensive for large N and this approach is rarely used to solve systems of linear
equations. Instead a plethora of techniques are available: we list three relatively sim-
ple methods below.

A.2.1 Gaussian Elimination

Readers may remember being taught how to solve two simultaneous linear equations
for unknown values of x and y at school. When using this technique, the first step
is to eliminate one of the variables resulting in a single linear equation for a single
variable that can easily be solved. The value of this variable is then substituted back
into one of the original equations to allow the value of the other variable to be calcu-
lated. Gaussian elimination is a systematic extension of this technique when solving
a system of N linear equations for N unknowns. There are two versions of Gaussian
elimination: with or without pivoting. We now describe both of these versions.

A.2.1.1 Gaussian Elimination Without Pivoting

The original system of equations may be written
⎛
⎜⎜⎜⎜⎜⎝

a00 a01 a02 . . . a0,N−1
a10 a11 a12 . . . a1,N−1
a20 a21 a22 . . . a2,N−1
...

...
...

. . .
...

aN−1,0 aN−1,1 aN−1,2 . . . aN−1,N−1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

x0
x1
x2
...

xN−1

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

b0
b1
b2
...

bN−1

⎞
⎟⎟⎟⎟⎟⎠

.

Let us first assume that a00 �= 0. This is a very restrictive assumption: in
Sect. A.2.1.3 we introduce pivoting, which allows us to deal with the case a00 = 0.
The assumption a00 �= 0 allows us to eliminate x0 from all but the first equation: this
is achieved by subtracting a suitable multiple of the first equation, and results in the
following system:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a00 a01 a02 . . . a0,N−1

0 a
(1)
11 a

(1)
12 . . . a

(1)
1,N−1

0 a
(1)
21 a

(1)
22 . . . a

(1)
2,N−1

...
...

...
. . .

...

0 a
(1)
N−1,1 a

(1)
N−1,2 . . . a

(1)
N−1,N−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

x0
x1
x2
...

xN−1

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b0

b
(1)
1

b
(1)
2
...

b
(1)
N−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

218 A Linear Algebra

where:

mi0 = ai0/a00, i = 1,2, . . . ,N − 1, using the assumption that a00 �= 0,

a
(1)
ij = aij − mi0a0j , i, j = 1,2, . . . ,N − 1,

b
(1)
i = bi − mi0b0, i = 1,2, . . . ,N − 1.

Assuming now that a
(1)
11 �= 0, we may repeat this process to eliminate x1 from all

but the first two equations:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a00 a01 a02 . . . a0,N−1

0 a
(1)
11 a

(1)
12 . . . a

(1)
1,N−1

0 0 a
(2)
22 . . . a

(2)
2,N−1

...
...

...
. . .

...

0 0 a
(2)
N−1,2 . . . a

(2)
N−1,N−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

x0
x1
x2
...

xN−1

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b0

b
(1)
1

b
(2)
2
...

b
(2)
N−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where:

mi1 = a
(1)
i1 /a

(1)
11 , i = 2,3, . . . ,N − 1, using the assumption that a

(1)
11 �= 0,

a
(2)
ij = a

(1)
ij − mi1a

(1)
1j , i, j = 2,3, . . . ,N − 1,

b
(2)
i = b

(1)
i − mi1b

(1)
1 , i = 2,3, . . . ,N − 1.

Providing that at all steps we have a
(k)
kk �= 0, k = 0,1, . . . ,N −1, we may continue

in this fashion until we have generated an upper triangular matrix A(N−1):

A(N−1)x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a00 a01 a02 . . . a0,N−1

0 a
(1)
11 a

(1)
12 . . . a

(1)
1,N−1

0 0 a
(2)
22 . . . a

(2)
2,N−1

...
...

...
. . .

...

0 0 0 . . . a
(N−1)
N−1,N−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

x0
x1
x2
...

xN−1

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b0

b
(1)
1

b
(2)
2
...

b
(N−1)
N−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= b(N−1).

Solving this upper triangular system is a straightforward task: we start with the last
equation in this system and work our way backwards. The first two steps in this
procedure are

xN−1 = b
(N−1)
N−1 /a

(N−1)
N−1,N−1,

xN−2 = 1

a
(N−2)
N−2,N−2

(
b

(N−2)
N−2 − a

(N−2)
N−2,N−1xN−1

)
.

A.2 Systems of Linear Equations 219

A general formula exists for calculating xk , k = 0,1,2, . . . ,N − 1. Assuming that
we have already calculated xk+1, xk+2, . . . , xN−1, we may calculate xk by

xk = 1

a
(k)
k,k

(
b

(k)
k −

N−1∑
i=k+1

a
(k)
k,i xi

)
. (A.3)

This completes the description of the Gaussian elimination algorithm without piv-
oting. A very important point to note is that there is no need to store all the ma-
trices generated during this algorithm: only the most recently generated version is
required, and all earlier matrices may be discarded.

A.2.1.2 LU Decomposition

The Gaussian elimination process described above may be used to factorise A as
the product of a lower triangular matrix L and an upper triangular matrix U, that is,
A = LU. Defining the matrices M0,M1, . . . by

M0 =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0
−m10 1 0 . . . 0
−m20 0 1 . . . 0

...
...

...
. . .

...

−mN−1,0 0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎠

,

M1 =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0
0 1 0 . . . 0
0 −m21 1 . . . 0
...

...
...

. . .
...

0 −mN−1,1 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎠

, . . . ,

we may write

A(N−1) = MN−2MN−1 · · ·M1M0A,

or, equivalently,

A = M−1
0 M−1

1 · · ·M−1
N−1M−1

N−2A(N−1).

We first note that the inverses of the matrices M0,M1, . . ., are simply

M−1
0 =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0
m10 1 0 . . . 0
m20 0 1 . . . 0
...

...
...

. . .
...

mN−1,0 0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎠

,

220 A Linear Algebra

M−1
1 =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0
0 1 0 . . . 0
0 m21 1 . . . 0
...

...
...

. . .
...

0 mN−1,1 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎠

,

These matrices are all lower triangular. It is trivial to prove that the product of lower
triangular matrices is also lower triangular. Writing

L = M−1
0 M−1

1 · · ·M−1
N−1M−1

N−2,

U = A(N−1),

we see that we have A = LU with L a lower triangular matrix and U an upper
triangular matrix. An explicit representation of L exists: direct calculation may be
used to verify that

L =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0
m10 1 0 . . . 0
m20 m21 1 . . . 0
...

...
...

. . .
...

mN−1,0 mN−1,1 mN−1,2 . . . 1

⎞
⎟⎟⎟⎟⎟⎠

.

A.2.1.3 Gaussian Elimination with Pivoting

The Gaussian elimination technique described above required that a
(k)
kk �= 0 at each

step. Clearly this algorithm would fail for a nonsingular matrix such as

A =
⎛
⎝

1 1 1
1 1 2
0 5 1

⎞
⎠ ,

where

A(1) =
⎛
⎝

1 1 1
0 0 1
0 5 1

⎞
⎠ ,

and so a
(1)
11 = 0, violating one of the assumptions made in Sect. A.2.1.1. We can,

however, proceed further: in this case we would simply interchange the last two
rows of both A(1) and b(1). This is known as pivoting.

Even if |a(k)
kk | is not zero it may be advisable to use pivoting. In Eq. (A.3), we see

that calculating the value of xk requires us to divide by a
(k)
kk . If |a(k)

kk | is small then

A.2 Systems of Linear Equations 221

the division by a small number may introduce numerical errors in the calculation
of xk . To avoid both of these problems, we recommend pivoting at each step: when
constructing A(k), find the row n with the largest absolute value of a

(k)
nk , n = k, k +

1, . . . ,N −1, and then interchange row k and row n. It is relatively simple to include
this in our Gaussian elimination algorithm: at step k we are working with the linear
system

A(k)x = b(k).

To interchange rows k and n in this system of equations, we simply multiply both
sides of this equation by by the matrix P(kn):

P(kn)Akx = P(kn)bk,

where P(kn) is a square matrix of size N with entries given by

P(kn)
ij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, i = j, i, j �= k, i, j �= n,

1, i = k, j = n,

1, i = n, j = k,

0, otherwise.

For example, if we wanted to interchange the row with index 2 and the row with
index 4 in a square matrix of size 5, then the matrix P(24) would be given by

P(24) =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0

⎞
⎟⎟⎟⎟⎠

.

The key point to note when modifying the LU -factorisation algorithm described
in Sect. A.2.1.1 to take account of pivoting is that Gaussian elimination with pivot-
ing would give exactly the same results if all the rows were interchanged first, and
then Gaussian elimination with no pivoting were carried out. Denoting the prod-
uct of all the matrices representing row interchanges by P, we see that the LU -
decomposition algorithm now reduces to a factorisation of the matrix PA: that is,
forming

LU = PA.

222 A Linear Algebra

A.2.2 The Thomas Algorithm

The Thomas algorithm may be used for matrices with a specific structure. Suppose
our matrix A has structure

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 . . . 0 0 0
−p1 q1 −r1 0 . . . 0 0 0

0 −p2 q2 −r2 . . . 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 . . . −pN−2 qN−2 −rN−2
0 0 0 0 . . . 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where the entries of A satisfy

pi > 0, qi > 0, ri > 0, qi > pi + ri , i = 1,2, . . . ,N − 2.

This condition is satisfied, for example, for an implicit finite difference discretisation
of the heat equation in one spatial dimension with Dirichlet boundary conditions at
both ends of the spatial domain. Defining

e0 = 0, f0 = b0,

ei = ri

qi − piei−1
, fi = bi + pifi−1

qi − piei−1
, i = 1,2, . . . ,N − 2,

then the linear system may be solved using the explicit recurrence relation

xN−1 = bN−1,

xi = ri

qi − piei−1
xi+1 + bi + pifi−1

qi − piei−1
, i = N − 2,N − 3, . . . ,1,

x0 = b0.

A.2.3 The Conjugate Gradient Method

The matrices arising in many scientific computing applications—for example, fi-
nite element, finite difference and finite volume discretisations of partial differential
equations—often have a large number of rows and columns, but very few nonzero
elements in each row of the matrix. Such matrices are termed sparse matrices.

It is often the case that storing every element of a sparse matrix would exceed the
memory limitations of a computational architecture, but storing only the nonzeros
of this matrix is possible within the constraints of available memory. This poses
a logistical challenge for the solution of linear systems described by this matrix:
the LU -factorisation of a sparse matrix described in Sect. A.2.1.1 does not result
in sparse matrices L and U , and so these matrices will suffer from the memory

A.2 Systems of Linear Equations 223

Algorithm 1 Conjugate gradient method for solving Ax = b
Require: Symmetric, positive definite matrix A, specified vector b, initial guess x0

(or set x0 = 0), tolerance ε.

1: k = 0, r = b − Axk , p = 0, β = 0
2: while ‖r‖ ≥ ε do
3: if k > 0 then
4: β = r�r

r�
prevrprev

5: end if
6: p = r + βp
7: α = r�r

p�Ap
8: xk+1 = xk + αp
9: rprev = r

10: r = b − Axk+1
11: k = k + 1
12: end while
13: x = xk

limitations described earlier. To circumvent this problem, iterative techniques may
be used for the solution of sparse linear systems, where successive iterates of the
solution of the linear system xk , k = 1,2, . . . are generated until ‖b − Axk‖ < ε for
some user-specified tolerance ε. This branch of numerical linear algebra is a large
subject in its own right and we only touch briefly upon it here, giving one algorithm
for a very specific class of matrices, namely symmetric, positive definite matrices.

A matrix A is said to be positive definite if, and only if, for all vectors x of the
correct size the following two conditions are met:

x�Ax ≥ 0, and

x�Ax = 0 only if x = 0.

If a matrix A is positive definite and symmetric, then we may solve the linear
system using the conjugate gradient method, given by Algorithm 1.

BOther Programming Constructs You Might
Meet

Below we briefly describe some programming constructs that other programmers
may include in their C++ code. Many of these are constructs that were originally
designed for the C programming language. As C++ was developed from C, much
of the C language is legal C++, although the modifications developed for the C++
language are generally superior.

B.1 C Style Output

We devoted the whole of Chap. 3 to describing the C++ machinery for input and out-
put. To explain the corresponding machinery in C would require a similar amount of
space, and so we only touch upon C style output here, limiting ourselves to describ-
ing output to the console. Nevertheless, this should give the flavour of C style output
commands, allowing the reader to at least recognise them should they see them.

In the code below, we show how to use C style output to print a double pre-
cision floating point variable to the screen in both normal and scientific notation,
and how to print an integer to the screen. C style output requires the whole of
the output to be enclosed within double quotation marks. When a variable is to
be printed it is represented by %f for a double precision floating point variable,
%i for an integer variable, and %e for a double precision floating point variable in
scientific notation. Finally, the variables to be printed are included in an ordered
list at the end of the statement. Note that the included file for C style printing is
<stdio.h>—standard input and output which provides basic functionality simi-
lar to <iostream> in C++.

�

1 #include <stdio.h>
2

3 int main(int argc, char* argv[])
4 {
5 double x = 105.0;
6 int j = 500;
7 printf("x = %f and j = %i\n", x, j);
8 printf("In scientific notation, x = %e\n", x);
9 return 0;

10 }

J. Pitt-Francis, J. Whiteley, Guide to Scientific Computing in C++,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-4471-2736-9, © Springer-Verlag London Limited 2012

225

http://dx.doi.org/10.1007/978-1-4471-2736-9

226 B Other Programming Constructs You Might Meet

Other C variations on printf which you might meet are fprintf for printing
to file, in which the first argument is a file pointer of type FILE* and sprintf for
printing to a string.

B.2 C Style Dynamic Memory Allocation

In Sect. 4.2, we explained how the C++ keywords new and delete could be used
to allocate memory dynamically for arrays, and then free the memory when it was no
longer needed. C also allows this, through the use of malloc (“memory allocate”)
and free. As with C style output above, we only touch briefly on the use of these
functions to allow the reader to recognise them should they come across them. In the
code below, we declare a pointer to a double precision variable, vector, in line 6.
In line 7, we then use the malloc function to allocate memory for 100 entries of the
array vector, all of the same size as a double precision floating point variable. In
lines 8–13, we use these entries in the same way as a C++ array. Finally, in line 14,
we free the memory allocated to this array through the use of the C function called
free.

�

1 #include <iostream>
2 #include <cstdlib>
3

4 int main(int argc, char* argv[])
5 {
6 double* vector;
7 vector = ((double*)(malloc(100*sizeof(double))));
8 vector[0] = 1.0;
9 vector[90] = 3.0;

10 std::cout << "Entry of vector with index 0 = "
11 << vector[0] << "\n";
12 std::cout << "Entry of vector with index 90 = "
13 << vector[90] << "\n";
14 free(vector);
15 return 0;
16 }

B.3 Ternary ?: Operator

In Sect. 2.1.3, we saw that the keywords if and else could be used to execute
one set of statements if a condition was met, and a different set of instructions if the
condition is not met, as in the code fragment below.

�

1 double a, b, x;
2 if (a > b)
3 {

B.4 Using Namespace 227

4 x = 100.0;
5 }
6 else
7 {
8 // a <= b
9 x = 0.0;

10 }

The ternary1 ?: operator has identical effect to the if–else statements above:
the code above may be written identically as

�

1 double a, b, x;
2 x = (a > b) ? 100.0 : 0.0;

Although the code written above is shorter than the original if–else statements
we do not recommend it. The use of if and else makes the code much more
readable, especially by anyone who is not an expert in C++ programming.

B.4 Using Namespace

You may find it tedious to have to write std:: before cout and other functionality
of the C++ language. There is a way around this—we may use the using statement
once in the code as shown below.

�

1 #include <iostream>
2

3 using namespace std;
4 int main(int argc, char* argv[])
5 {
6 string city = "Cambridge";
7 cout << city << "\n";
8 return 0;
9 }

At first sight, the code above may appear to make a programmer’s life a little
easier. Both string and cout have been used here without being preceded by the
slightly clunky std:: . This approach does, however, introduce a subtle problem.
Suppose we declared a variable called “vector”. It would then be unclear whether
an instance of the word “vector” is referring to this variable, or the STL vector
introduced in Chap. 8, which the using statement now allows us to refer to as
vector rather than std::vector . As such, we do not recommend use of the
using keyword.

1A ternary operator has three inputs.

228 B Other Programming Constructs You Might Meet

B.5 Structures

A structure is a collection of variables that are combined together. Structures can
be thought of as very simple classes, but without the ability to declare functions,
access privileges, or any other properties of classes other than variables. An example
of a structure is shown below. Note how the variables are accessed in exactly the
same way as classes (using “.” for a member or “->” to access a member by de-
referencing a pointer).

�

1 #include <iostream>
2

3 struct ModelParameters
4 {
5 double viscosity;
6 double density;
7 int numberOfDimensions;
8 };
9

10 int main(int argc, char* argv[])
11 {
12 ModelParameters example1;
13 example1.viscosity = 1.0e-4;
14 example1.density = 1.0;
15 ModelParameters* p_eg1 = &example1;
16 p_eg1->numberOfDimensions = 3;
17

18 std::cout << "Density is " << example1.density << "\n";
19

20 return 0;
21 }

B.6 Multiple Inheritance

As mentioned in Sect. 7.1 C++, unlike many other object-oriented languages, allows
multiple inheritance in which a derived class can be derived from multiple base
classes. That is, classes may have more than one parent.

Suppose we require a class of matrices so that we can calculate the determinant of
given matrices, calculate the eigenvalues of these matrices, and calculate the norm
of these matrices. One colleague may have a class of matrices, MatrixDet, that
calculates the determinant of a matrix, but doesn’t have the functionality for calcu-
lating the eigenvalues or the norm of a matrix. Another colleague may have a class of
matrices, MatrixEigsNorm, that does allow us to calculate the eigenvalues and
norm of a matrix, but not the determinant. The functionality required is therefore all
available, but not in the same class. It would therefore be convenient to merge the
two classes to create a new class that contains all the functionality required. This

B.7 Class Initialisers 229

is possible through multiple inheritance. Below we show how to perform multiple
inheritance to generate a new class MatrixCombined.

�

1 #include "MatrixDet.hpp"
2 #include "MatrixEigsNorm.hpp"
3

4 class MatrixCombined: public MatrixDet,
5 public MatrixEigsNorm
6 {
7 // Body of class
8 };

If the class MatrixDet has no member with the same name as a member of
the class MatrixEigsNorm then multiple inheritance is an ideal solution to this
problem. Suppose both classes have a method called ZeroEntries. Provided this
member is made a virtual function in both the class MatrixDet and the class
MatrixEigsNorm we may prevent ambiguity through either defining a new func-
tion in the class MatrixCombined, or by explicitly identifying which function is
to be used in the calling code. For example:

�

1 MatrixCombined mat;
2 // use method ZeroEntries from the class MatrixDet
3 mat.MatrixDet::ZeroEntries();

B.7 Class Initialisers

In many cases, the constructor of a class is a simple piece of code involving a list of
assignments. For example, the default constructor for the Book class in Sect. 6.2.7
set all the string fields to “unspecified” and the default constructor of the Com-
plexNumber class in Sect. 6.4 set the real and imaginary components to zero.

�

1 #include "ComplexNumber.hpp"
2 // Override default constructor
3 // Set real and imaginary parts to zero
4 ComplexNumber::ComplexNumber()
5 {
6 mRealPart = 0.0;
7 mImaginaryPart = 0.0;
8 }

In cases where a constructor makes assignments it is more efficient to use C++
initialisers. These are comma-separated lists of member variables and values which
appear after the constructor’s signature (and a colon) but before the main body of
the constructor code. Compilers for C++ are able to optimise a list of initialised

230 B Other Programming Constructs You Might Meet

values more completely than a block of code containing assignment statements. It
must be noted that some compilers insist that the initialisers are ordered exactly as
they appear in the definition of the class. An example constructor for the class of
complex numbers given in Sect. 6.4 that uses class initialisers is shown below.

�

1 #include "ComplexNumber.hpp"
2 // Override default constructor
3 // Initialize real and imaginary parts as zero
4 ComplexNumber::ComplexNumber() :
5 mRealPart(0.0),
6 mImaginaryPart(0.0)
7 {
8 // possibly have more code in body
9 }

CSolutions to Exercises

C.1 Matrix and Linear System Classes

The code below is example solutions for the Matrix and LinearSystem classes
developed in the Exercises at the end of Chap. 10.

Listing C.1 Matrix.hpp
�

1 #ifndef MATRIXHEADERDEF
2 #define MATRIXHEADERDEF
3 #include "Vector.hpp"
4

5 class Matrix
6 {
7 private:
8 double** mData; // entries of matrix
9 int mNumRows, mNumCols; // dimensions

10 public:
11 Matrix(const Matrix& otherMatrix);
12 Matrix(int numRows, int numCols);
13 ~Matrix();
14 int GetNumberOfRows() const;
15 int GetNumberOfColumns() const;
16 double& operator()(int i, int j); //1-based indexing
17 //overloaded assignment operator
18 Matrix& operator=(const Matrix& otherMatrix);
19 Matrix operator+() const; // unary +
20 Matrix operator-() const; // unary -
21 Matrix operator+(const Matrix& m1) const; // binary +
22 Matrix operator-(const Matrix& m1) const; // binary -
23 // scalar multiplication
24 Matrix operator*(double a) const;
25 double CalculateDeterminant() const;
26 // declare vector multiplication friendship
27 friend Vector operator*(const Matrix& m,
28 const Vector& v);

J. Pitt-Francis, J. Whiteley, Guide to Scientific Computing in C++,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-4471-2736-9, © Springer-Verlag London Limited 2012

231

http://dx.doi.org/10.1007/978-1-4471-2736-9

232 C Solutions to Exercises

�

29 friend Vector operator*(const Vector& v,
30 const Matrix& m);
31 };
32 // prototype signatures for friend operators
33 Vector operator*(const Matrix& m, const Vector& v);
34 Vector operator*(const Vector& v, const Matrix& m);
35

36 #endif

Listing C.2 Matrix.cpp
�

1 #include <cmath>
2 #include <cassert>
3 #include "Matrix.hpp"
4 #include "Vector.hpp"
5

6

7 // Overwritten copy constructor
8 // Allocate memory for new matrix, and copy
9 // entries into this matrix

10 Matrix::Matrix(const Matrix& otherMatrix)
11 {
12 mNumRows = otherMatrix.mNumRows;
13 mNumCols = otherMatrix.mNumCols;
14 mData = new double* [mNumRows];
15 for (int i=0; i<mNumRows; i++)
16 {
17 mData[i] = new double [mNumCols];
18 }
19 for (int i=0; i<mNumRows; i++)
20 {
21 for (int j=0; j<mNumCols; j++)
22 {
23 mData[i][j] = otherMatrix.mData[i][j];
24 }
25 }
26 }
27

28 // Constructor for vector of a given length
29 // Allocates memory, and initialises entries
30 // to zero
31 Matrix::Matrix(int numRows, int numCols)
32 {
33 assert(numRows > 0);
34 assert(numCols > 0);
35 mNumRows = numRows;

C.1 Matrix and Linear System Classes 233

�

36 mNumCols = numCols;
37 mData = new double* [mNumRows];
38 for (int i=0; i<mNumRows; i++)
39 {
40 mData[i] = new double [mNumCols];
41 }
42 for (int i=0; i<mNumRows; i++)
43 {
44 for (int j=0; j<mNumCols; j++)
45 {
46 mData[i][j] = 0.0;
47 }
48 }
49 }
50

51 // Overwritten destructor to correctly free memory
52 Matrix::~Matrix()
53 {
54 for (int i=0; i<mNumRows; i++)
55 {
56 delete[] mData[i];
57 }
58 delete[] mData;
59 }
60

61 // Method to get number of rows of matrix
62 int Matrix::GetNumberOfRows() const
63 {
64 return mNumRows;
65 }
66

67 // Method to get number of columns of matrix
68 int Matrix::GetNumberOfColumns() const
69 {
70 return mNumCols;
71 }
72

73 // Overloading the round brackets
74 // Note that this uses ‘one-based’ indexing,
75 // and a check on the validity of the index
76 double& Matrix::operator()(int i, int j)
77 {
78 assert(i > 0);
79 assert(i < mNumRows+1);
80 assert(j > 0);
81 assert(j < mNumCols+1);
82 return mData[i-1][j-1];
83 }

234 C Solutions to Exercises

�

84

85 // Overloading the assignment operator
86 Matrix& Matrix::operator=(const Matrix& otherMatrix)
87 {
88 assert(mNumRows = otherMatrix.mNumRows);
89 assert(mNumCols = otherMatrix.mNumCols);
90

91 for (int i=0; i<mNumRows; i++)
92 {
93 for (int j=0; j<mNumCols; j++)
94 {
95 mData[i][j] = otherMatrix.mData[i][j];
96 }
97 }
98 return *this;
99 }

100

101 // Overloading the unary + operator
102 Matrix Matrix::operator+() const
103 {
104 Matrix mat(mNumRows, mNumCols);
105 for (int i=0; i<mNumRows; i++)
106 {
107 for (int j=0; j<mNumCols; j++)
108 {
109 mat(i+1,j+1) = mData[i][j];
110 }
111 }
112 return mat;
113 }
114

115 // Overloading the unary - operator
116 Matrix Matrix::operator-() const
117 {
118 Matrix mat(mNumRows, mNumCols);
119 for (int i=0; i<mNumRows; i++)
120 {
121 for (int j=0; j<mNumCols; j++)
122 {
123 mat(i+1,j+1) = -mData[i][j];
124 }
125 }
126 return mat;
127 }
128

129 // Overloading the binary + operator
130 Matrix Matrix::operator+(const Matrix& m1) const
131 {
132 assert(mNumRows == m1.mNumRows);
133 assert(mNumCols == m1.mNumCols);
134 Matrix mat(mNumRows, mNumCols);

C.1 Matrix and Linear System Classes 235

�

135 for (int i=0; i<mNumRows; i++)
136 {
137 for (int j=0; j<mNumCols; j++)
138 {
139 mat(i+1,j+1) = mData[i][j] + m1.mData[i][j];
140 }
141 }
142 return mat;
143 }
144

145 // Overloading the binary - operator
146 Matrix Matrix::operator-(const Matrix& m1) const
147 {
148 assert(mNumRows == m1.mNumRows);
149 assert(mNumCols == m1.mNumCols);
150 Matrix mat(mNumRows, mNumCols);
151 for (int i=0; i<mNumRows; i++)
152 {
153 for (int j=0; j<mNumCols; j++)
154 {
155 mat(i+1,j+1) = mData[i][j] - m1.mData[i][j];
156 }
157 }
158 return mat;
159 }
160

161 // Overloading scalar multiplication
162 Matrix Matrix::operator*(double a) const
163 {
164 Matrix mat(mNumRows, mNumCols);
165 for (int i=0; i<mNumRows; i++)
166 {
167 for (int j=0; j<mNumCols; j++)
168 {
169 mat(i+1,j+1) = a*mData[i][j];
170 }
171 }
172 return mat;
173 }
174

175 // Overloading matrix multiplied by a vector
176 Vector operator*(const Matrix& m, const Vector& v)
177 {
178 int original_vector_size = v.GetSize();
179 assert(m.GetNumberOfColumns() == original_vector_size);
180 int new_vector_length = m.GetNumberOfRows();
181 Vector new_vector(new_vector_length);
182

183 for (int i=0; i<new_vector_length; i++)

236 C Solutions to Exercises

�

184 {
185 for (int j=0; j<original_vector_size; j++)
186 {
187 new_vector[i] += m.mData[i][j]*v.Read(j);
188 }
189 }
190

191 return new_vector;
192 }
193

194 // Overloading vector multiplied by a matrix
195 Vector operator*(const Vector& v, const Matrix& m)
196 {
197 int original_vector_size = v.GetSize();
198 assert(m.GetNumberOfRows() == original_vector_size);
199 int new_vector_length = m.GetNumberOfColumns();
200 Vector new_vector(new_vector_length);
201

202 for (int i=0; i<new_vector_length; i++)
203 {
204 for (int j=0; j<original_vector_size; j++)
205 {
206 new_vector[i] += v.Read(j)*m.mData[j][i];
207 }
208 }
209

210 return new_vector;
211 }
212

213 // Calculate determinant of square matrix recursively
214 double Matrix::CalculateDeterminant() const
215 {
216 assert(mNumRows == mNumCols);
217 double determinant = 0.0;
218

219 if (mNumRows == 1)
220 {
221 determinant = mData[0][0];
222 }
223 else
224 {
225 // More than one entry of matrix
226 for (int i_outer=0; i_outer<mNumRows; i_outer++)
227 {
228 Matrix sub_matrix(mNumRows-1,
229 mNumRows-1);
230 for (int i=0; i<mNumRows-1; i++)
231 {
232 for (int j=0; j<i_outer; j++)
233 {
234 sub_matrix(i+1,j+1) = mData[i+1][j];
235 }

C.1 Matrix and Linear System Classes 237

�

236 for (int j=i_outer; j<mNumRows-1; j++)
237 {
238 sub_matrix(i+1,j+1) = mData[i+1][j+1];
239 }
240 }
241 double sub_matrix_determinant =
242 sub_matrix.CalculateDeterminant();
243

244 determinant += pow(-1.0, i_outer)*
245 mData[0][i_outer]*sub_matrix_determinant;
246 }
247 }
248 return determinant;
249 }

Listing C.3 LinearSystem.hpp
�

1 #ifndef LINEARSYSTEMHEADERDEF
2 #define LINEARSYSTEMHEADERDEF
3 #include "Vector.hpp"
4 #include "Matrix.hpp"
5

6 class LinearSystem
7 {
8 private:
9 int mSize; // size of linear system

10 Matrix* mpA; // matrix for linear system
11 Vector* mpb; // vector for linear system
12

13 // Only allow constructor that specifies matrix and
14 // vector to be used. Copy constructor is private.
15 LinearSystem(const LinearSystem& otherLinearSystem){};
16 public:
17 LinearSystem(const Matrix& A, const Vector& b);
18

19 // destructor frees memory allocated
20 ~LinearSystem();
21

22 // Method for solving system
23 virtual Vector Solve();
24 };
25

26 #endif

238 C Solutions to Exercises

Listing C.4 LinearSystem.cpp
�

1 #include <cmath>
2 #include <cassert>
3 #include "LinearSystem.hpp"
4 #include "Matrix.hpp"
5 #include "Vector.hpp"
6

7 // Copy matrix and vector so that original matrix and vector
8 // specified are unchanged by Gaussian elimination
9 LinearSystem::LinearSystem(const Matrix& A, const Vector& b)

10 {
11 // check matrix and vector are of compatible sizes
12 int local_size = A.GetNumberOfRows();
13 assert(A.GetNumberOfColumns() == local_size);
14 assert(b.GetSize() == local_size);
15

16 // set variables for linear system
17 mSize = local_size;
18 mpA = new Matrix(A);
19 mpb = new Vector(b);
20 }
21

22 // Destructor to free memory
23 LinearSystem::~LinearSystem()
24 {
25 delete mpA;
26 delete mpb;
27 }
28

29 // Solve linear system using Gaussian elimination
30 // This method changes the content of the matrix mpA
31 Vector LinearSystem::Solve()
32 {
33 Vector m(mSize); //See description in Appendix A
34 Vector solution(mSize);
35

36 // We introduce references to make the syntax readable
37 Matrix rA = *mpA;
38 Vector rb = *mpb;
39

40 // forward sweep of Gaussian elimination
41 for (int k=0; k<mSize-1; k++)
42 {
43 // see if pivoting is necessary
44 double max = 0.0;
45 int row = -1;
46 for (int i=k; i<mSize; i++)

C.1 Matrix and Linear System Classes 239

�

47 {
48 if (fabs(rA(i+1,k+1)) > max)
49 {
50 row = i;
51 }
52 }
53 assert(row > 0);
54

55 // pivot if necessary
56 if (row != k)
57 {
58 // swap matrix rows k+1 with row+1
59 for (int i=0; i<mSize; i++)
60 {
61 double temp = rA(k+1,i+1);
62 rA(k+1,i+1) = rA(row+1,i+1);
63 rA(row+1,i+1) = temp;
64 }
65 // swap vector entries k+1 with row+1
66 double temp = rb(k+1);
67 rb(k+1) = rb(row+1);
68 rb(row+1) = temp;
69 }
70

71 // create zeros in lower part of column k
72 for (int i=k+1; i<mSize; i++)
73 {
74 m(i+1) = rA(i+1,k+1)/rA(k+1,k+1);
75 for (int j=k; j<mSize; j++)
76 {
77 rA(i+1,j+1) -= rA(k+1,j+1)*m(i+1);
78 }
79 rb(i+1) -= rb(k+1)*m(i+1);
80 }
81 }
82

83 // back substitution
84 for (int i=mSize-1; i>-1; i--)
85 {
86 solution(i+1) = rb(i+1);
87 for (int j=i+1; j<mSize; j++)
88 {
89 solution(i+1) -= rA(i+1,j+1)*solution(j+1);
90 }
91 solution(i+1) /= rA(i+1,i+1);
92 }
93

94 return solution;
95 }

240 C Solutions to Exercises

C.2 ODE Solver Library

The code below is example solutions for the classes developed in the Exercises at
the end of Chap. 12.

Listing C.5 FiniteDifferenceGrid.cpp
�

1 #include <cassert>
2 #include "FiniteDifferenceGrid.hpp"
3 #include "Node.hpp"
4

5 FiniteDifferenceGrid::FiniteDifferenceGrid(int numNodes,
6 double xMin, double xMax)
7 {
8 double stepsize = (xMax-xMin)/((double)(numNodes-1));
9 for (int i=0; i<numNodes; i++)

10 {
11 Node node;
12 node.coordinate = xMin+i*stepsize;
13 mNodes.push_back(node);
14 }
15 assert(mNodes.size() == numNodes);
16 }

Listing C.6 BvpOde.cpp
�

1 #include <iostream>
2 #include <fstream>
3 #include <cassert>
4 #include "BvpOde.hpp"
5

6 BvpOde::BvpOde(SecondOrderOde* pOde,
7 BoundaryConditions* pBcs, int numNodes)
8 {
9 mpOde = pOde;

10 mpBconds = pBcs;
11

12 mNumNodes = numNodes;
13 mpGrid = new FiniteDifferenceGrid(mNumNodes, pOde->mXmin,
14 pOde->mXmax);
15

16 mpSolVec = new Vector(mNumNodes);
17 mpRhsVec = new Vector(mNumNodes);
18 mpLhsMat = new Matrix(mNumNodes, mNumNodes);
19

20 mFilename = "ode_output.dat";
21 mpLinearSystem = NULL;
22 }

C.2 ODE Solver Library 241

�

23

24 BvpOde::~BvpOde()
25 {
26 // Deletes memory allocated in constructor
27 delete mpSolVec;
28 delete mpRhsVec;
29 delete mpLhsMat;
30 delete mpGrid;
31 // Only delete if Solve has been called
32 if (mpLinearSystem)
33 {
34 delete mpLinearSystem;
35 }
36 }
37

38 void BvpOde::Solve()
39 {
40 PopulateMatrix();
41 PopulateVector();
42 ApplyBoundaryConditions();
43 mpLinearSystem = new LinearSystem(*mpLhsMat, *mpRhsVec);
44 *mpSolVec = mpLinearSystem->Solve();
45 WriteSolutionFile();
46 }
47

48 void BvpOde::PopulateMatrix()
49 {
50 for (int i=1; i<mNumNodes-1; i++)
51 {
52 // xm, x and xp are x(i-1), x(i) and x(i+1)
53 double xm = mpGrid->mNodes[i-1].coordinate;
54 double x = mpGrid->mNodes[i].coordinate;
55 double xp = mpGrid->mNodes[i+1].coordinate;
56 double alpha = 2.0/(xp-xm)/(x-xm);
57 double beta = -2.0/(xp-x)/(x-xm);
58 double gamma = 2.0/(xp-xm)/(xp-x);
59 (*mpLhsMat)(i+1,i) = (mpOde->mCoeffOfUxx)*alpha -
60 (mpOde->mCoeffOfUx)/(xp-xm);
61 (*mpLhsMat)(i+1,i+1) = (mpOde->mCoeffOfUxx)*beta +
62 mpOde->mCoeffOfU;
63 (*mpLhsMat)(i+1,i+2) = (mpOde->mCoeffOfUxx)*gamma +
64 (mpOde->mCoeffOfUx)/(xp-xm);
65 }
66 }
67

68 void BvpOde::PopulateVector()
69 {
70 for (int i=1; i<mNumNodes-1; i++)
71 {
72 double x = mpGrid->mNodes[i].coordinate;
73 (*mpRhsVec)(i+1) = mpOde->mpRhsFunc(x);

242 C Solutions to Exercises

�

74 }
75 }
76

77 void BvpOde::ApplyBoundaryConditions()
78 {
79 bool left_bc_applied = false;
80 bool right_bc_applied = false;
81

82 if (mpBconds->mLhsBcIsDirichlet)
83 {
84 (*mpLhsMat)(1,1) = 1.0;
85 (*mpRhsVec)(1) = mpBconds->mLhsBcValue;
86 left_bc_applied = true;
87 }
88

89 if (mpBconds->mRhsBcIsDirichlet)
90 {
91 (*mpLhsMat)(mNumNodes,mNumNodes) = 1.0;
92 (*mpRhsVec)(mNumNodes) = mpBconds->mRhsBcValue;
93 right_bc_applied = true;
94 }
95

96 if (mpBconds->mLhsBcIsNeumann)
97 {
98 assert(left_bc_applied == false);
99 double h = mpGrid->mNodes[1].coordinate -

100 mpGrid->mNodes[0].coordinate;
101 (*mpLhsMat)(1,1) = -1.0/h;
102 (*mpLhsMat)(1,2) = 1.0/h;
103 (*mpRhsVec)(1) = mpBconds->mLhsBcValue;
104 left_bc_applied = true;
105 }
106

107 if (mpBconds->mRhsBcIsNeumann)
108 {
109 assert(right_bc_applied == false);
110 double h = mpGrid->mNodes[mNumNodes-1].coordinate -
111 mpGrid->mNodes[mNumNodes-2].coordinate;
112 (*mpLhsMat)(mNumNodes,mNumNodes-1) = -1.0/h;
113 (*mpLhsMat)(mNumNodes,mNumNodes) = 1.0/h;
114 (*mpRhsVec)(mNumNodes) = mpBconds->mRhsBcValue;
115 right_bc_applied = true;
116 }
117

118 // Check that boundary conditions have been applied
119 // on both boundaries
120 assert(left_bc_applied);
121 assert(right_bc_applied);
122 }
123

124 void BvpOde::WriteSolutionFile()

C.2 ODE Solver Library 243

�

125 {
126 std::ofstream output_file(mFilename.c_str());
127 assert(output_file.is_open());
128 for (int i=0; i<mNumNodes; i++)
129 {
130 double x = mpGrid->mNodes[i].coordinate;
131 output_file << x << " " << (*mpSolVec)(i+1) << "\n";
132 }
133 output_file.flush();
134 output_file.close();
135 std::cout<<"Solution written to "<<mFilename<<"\n";
136 }

Listing C.7 BoundaryConditions.cpp
�

1 #include <cassert>
2 #include "BoundaryConditions.hpp"
3

4 BoundaryConditions::BoundaryConditions()
5 {
6 mLhsBcIsDirichlet = false;
7 mRhsBcIsDirichlet = false;
8 mLhsBcIsNeumann = false;
9 mRhsBcIsNeumann = false;

10 }
11

12 void BoundaryConditions::SetLhsDirichletBc(double lhsValue)
13 {
14 assert(!mLhsBcIsNeumann);
15 mLhsBcIsDirichlet = true;
16 mLhsBcValue = lhsValue;
17 }
18

19 void BoundaryConditions::SetRhsDirichletBc(double rhsValue)
20 {
21 assert(!mRhsBcIsNeumann);
22 mRhsBcIsDirichlet = true;
23 mRhsBcValue = rhsValue;
24 }
25

26 void BoundaryConditions::
27 SetLhsNeumannBc(double lhsDerivValue)
28 {
29 assert(!mLhsBcIsDirichlet);
30 mLhsBcIsNeumann = true;
31 mLhsBcValue = lhsDerivValue;
32 }

244 C Solutions to Exercises

�

33

34 void BoundaryConditions::
35 SetRhsNeumannBc(double rhsDerivValue)
36 {
37 assert(!mRhsBcIsDirichlet);
38 mRhsBcIsNeumann = true;
39 mRhsBcValue = rhsDerivValue;
40 }

Further Reading1

Mathematical Methods and Linear Algebra

1. Iserles, A.: A First Course in the Numerical Analysis of Differential Equations, 2nd edn.
Cambridge University Press, Cambridge (2009)

2. Kreyszig, E.: Advanced Engineering Mathematics, 9th edn. Wiley, New York (2006)
3. Süli, E., Mayers, D.F.: An Introduction to Numerical Analysis. Cambridge University Press,

Cambridge (2006)
4. Trefethen, L.N., Bau, D.: Numerical Linear Algebra. Society for Industrial and Applied Math-

ematics, Philadelphia (1997)

C++ Programming

5. Cline, M.P., Lomow, G., Girou, M.: C++ FAQs, 2nd edn. Addison–Wesley, Reading (1998)
6. Meyers, S.: Effective C++, 3rd edn. Addison–Wesley, Reading (2005)
7. Stroustrup, B.: The C++ Programming Language, 3rd edn. AT&T, New York (2000)
8. The website: http://www.cplusplus.com

The Message-Passing Interface (MPI)

9. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming with the
Message-Passing Interface, 2nd edn. Massachusetts Institute of Technology Press, Cambridge
(1999)

10. Gropp, W., Lusk, E., Thakur, R.: Using MPI-2: Advanced Features of the Message-Passing
Interface. Massachusetts Institute of Technology Press, Cambridge (1999)

1In earlier chapters, we have touched on a few issues that are beyond the scope of this book. When
discussing these issues, we have directed the interested reader towards a selection of various re-
sources: these are listed above thematically. For the “Mathematical Methods and Linear Algebra”
theme, the most comprehensive reference for the basic material is that written by Kreyszig. The
other references given are suitable for more advanced numerical concepts. For the “C++ Program-
ming” theme, the website http://www.cplusplus.com provides extensive practical guidance, whilst
the texts listed focus on advanced features of the language. In the “Message-Passing Interface”
theme, the texts give an accessible tutorial-based overview of MPI-1 and MPI-2, respectively. The
differences between these two MPI standards are discussed in Sect. 11.2.

J. Pitt-Francis, J. Whiteley, Guide to Scientific Computing in C++,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-4471-2736-9, © Springer-Verlag London Limited 2012

245

http://www.cplusplus.com
http://www.cplusplus.com
http://dx.doi.org/10.1007/978-1-4471-2736-9

Index

A
Abstraction, 2, 88, 89, 134
Access privileges, see Classes
Addresses of variables, 55
AND, see Logical operators
Arrays, 16

irregularly sized, 61
one-based indexing, 36
safe dynamic allocation, 63, 147
sending to functions, 71
static allocation of memory, 16

initialising, 16
zero-based indexing, 16, 36

ASCII character variables, 17
assert, 21, 141
Assertions, 141

B
Blocks, 65
Boolean variables, 17

C
C programming language, 3

C style dynamic memory allocation, 226
free, 226
malloc, 226

C style output, 225
C++ file extensions, 5
catch, see Exceptions
cerr, 43, 44
cfloat, 39
cin, 20, 47
Classes, 87

abstract classes, 124
access privileges, 90, 92, 96, 103, 118, 120,

151, 157
use for validating data, 93

class initialisers, 229
class members, 89
constructors, 98, 151, 156

copy constructor, 100, 156

customised constructor, 100, 157
default constructor, 98, 156
overriding, 98

derived classes, 117, 118
destructors, 98, 151, 156, 157
friend keyword, 103, 111, 159
header files, 90, 91

including only once, 91
members, 89
methods, 89, 92
multiple inheritance, 117
pointers to, 103
setting and accessing variables, 92

Closing the file handle, 44
cmath, 13
Coding standards, 112
Commenting code, 5, 83, 112
Compiling code, 6

at the command line, 7
compiler flags, 8, 95
linking, 95
Makefiles, 95
multiple files, 94
object file, 94
template compilation, 139

Complex numbers, 105
const, 11
Constructors, see Classes
cout, 6, 19, 44

D
Debugging code, 22, 126, 186
Destructors, see Classes
Distributed memory architectures, 165, 166
Division of integers, 15
Documenting code, 83
double, 10
Dynamic allocation of memory, see Pointers
Dynamic casting, 124

J. Pitt-Francis, J. Whiteley, Guide to Scientific Computing in C++,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-4471-2736-9, © Springer-Verlag London Limited 2012

247

http://dx.doi.org/10.1007/978-1-4471-2736-9

248 Index

E
else, 27, 226
Encapsulation, 2, 88, 89
Exception

catch, 144
three levels of error, 143
throw, 144
try, 144

Extensibility, 2, 118, 134

F
Finite difference approximations, 195, 207

application to boundary value problems,
197

Floating point variables, 10, 13
comparing two floating point variables, 39
DBL_EPSILON, 39
double precision, 13

Flow of control, 25
Flushing output, 44, 45
for, 25, 32
Fortran, 3, 4
fprintf, 226
free, see C programming language
friend, see Classes
fstream, 44, 47
Function overloading, 76
Function pointers, see Functions
Function prototypes, see Functions
Functions, 66

class members, 92
default values for function arguments, 75
function pointers, 79
function prototypes, 66, 78
recursive functions, 81
return type, 67
returning a pointer, 69
sending arrays to, 71
use of arguments that are pointers, 70

G
Global variable, see Variables
GNU Octave, 3
Guard, 26

I
if, 25, 226
Indenting code, 6, 26, 112
Infinity, 142
Inheritance, 2, 89, 117, 118

abstract classes, 124
base class, 117
child class, 117
derived classes, 117

parent class, 117
private inheritance, 120
protected inheritance, 120
public inheritance, 118, 120

Input, 43
command line, 49
from console, 19, 20
from file, 47
rewinding a file, 48
strings, 20

Input stream variable, 47
int, 10
Integer variables, 10, 12

long integers, 12
short integers, 12
signed integers, 12
unsigned integers, 12

Integrated development environments, 6
Interpreted languages, 3
iostream, 5

K
Keywords, 11

L
Linear algebra, 151

conjugate gradient method, 222
Gaussian elimination, 217

no pivoting, 217
pivoting, 220

linear systems, 217
LU decomposition, 219, 221
parallel, 182
Thomas algorithm, 222

Linear algebra algorithms, 213
Local variable, see Variables
Logical operators, 29

AND, 29
NOT, 29
OR, 29

M
Makefiles, see Compiling code
malloc, see C programming language
Mathematical operations, 13

absolute value, 14
arccos, 14
arcsin, 14
arctan, 14
ceiling, 14
cosh, 14
cosine, 14
exponential, 13
floor, 14

Index 249

Mathematical operations (cont.)
logarithm, 14
raising variables to a given power, 13
shorthand, 14
sine, 14
sinh, 14
square root, 13
tangent, 14
tanh, 14

MATLAB, 3, 4, 151
Matrices, 151, 213

determinant, 215
eigenvalues, 216
inverse, 215
norm, 216
operations between, 214
positive definite, 223
symmetric, 214
transpose, 214

Message Passing Interface (MPI), 165, 167
Allgatherv, 179
Allreduce, 178
Barrier, 174
Bcast, 178
broadcast, 178
Bsend, 173
collective communication, 174

broadcast, 174
combined send and receive, 174
halo exchange, 175
reduction, 174

communication, 171
blocking, 173
buffered, 173
point-to-point, 171

compiling, 169
debugging, 186
executing, 170

remote machines, 170
gather, 179
Gather, 179
Ibsend, 173
input and output, 167
installing MPI, 167
Irecv, 173
Isend, 173
process, 167
rank, 167
Recv, 171, 173
reduce, 178
running code, 169
scatter, 179
Scatter, 179

Send, 171
Sendrecv, 175
Ssend, 173

Modularity, 2, 88, 89
Modules, 82, 87, 88
Multiple inheritance, 228

N
Namespace, 227
NOT, see Logical operators
Not-a-number, 141
Numerical libraries, 210

PETSc, 211

O
Object-orientation, 1, 87
Object-oriented numerical libraries, 193

ordinary differential equations, 200
partial differential equations, 207

Operator overloading, 105, 106, 112, 151, 158,
159

OR, see Logical operators
Ordinary differential equations, 193, 194
Output, 43

appending to existing file, 46
formatting, 19
redirected to file, 43
scientific notation, 51
setting precision of, 46, 51
to console, 19
to file, 44

Output stream variable, 44

P
Partial differential equations, 193
Pointer Aliasing, see Pointers
Pointer de-reference, see Pointers
Pointers, 55

array of, 60
delete keyword, 57, 58, 60, 63, 102,

156, 157, 160, 226
dynamic allocation of memory, 58
new keyword, 57, 58, 60, 63, 102, 156,

157, 160, 226
pointer aliasing, 58, 62
pointer de-reference, 56
pointer variables, 56
shared pointers, 64
to classes, 103

Polymorphism, 2, 118
run-time, 122
static, see Templates
templates, see Templates

Postcondition, 142

250 Index

Precondition, 142
printf, 225, 226
Python, 3

R
Recursive functions, see Functions
Reference variables, 74
Relational operators, 29

equal to, 29
equality versus assignment, 37
greater than, 29
greater than or equal to, 29
less than, 29
less than or equal to, 29
not equal to, 29

Reserved words, 11

S
Scientific notation, see Variables
Scope, 65
Shared memory architectures, 165
Shared pointers, see Pointers
sprintf, 226
Standard Template Library (STL), 131, 134

abstraction, 134
algorithm, 135
container, 134
deque, 134
iterator, 135
list, 134
push_back, 135
set, 137
vector, 135
vectors, 134

Statements, 5
stdio.h, 226
Strings, 18

Structures, 228
switch, 34

T
Templates, 131

for polymorphism, 133
Standard Template Library, see Standard

Template Library (STL)
validation of index to array, 132

Ternary ?: operator, 226
Test-driven development, 146
throw, see Exceptions
try, see Exceptions
Type conversion, 15

U
Unified modelling language, 120

V
Variables, 10

constant variables, 11
declaring variables, 10
global variable, 66
initialising variables, 11
local variable, 66
scientific notation, 12

Vectors, 151, 213
norm, 216
operations between, 214
scalar product, 215

Virtual methods, 122, 125
pure virtual method, 125

void, 68

W
while, 25, 30

	Guide to Scientiﬁc Computing in C++
	Preface
	Contents

	Chapter 1: Getting Started
	1.1 A Brief Introduction to C++
	1.1.1 C++ is "Object-Oriented"
	1.1.2 Why You Should Write Scientiﬁc Programs in C++
	1.1.3 Why You Should Not Write Scientiﬁc Programs in C++
	1.1.4 Scope of This Book

	1.2 A First C++ Program
	1.3 Compiling a C++ Program
	1.3.1 Integrated Development Environments
	1.3.2 Compiling at the Command Line
	1.3.3 Compiler Flags

	1.4 Variables
	1.4.1 Basic Numerical Variables
	1.4.2 Other Numerical Variables
	1.4.3 Mathematical Operations on Numerical Variables
	1.4.4 Division of Integers
	1.4.5 Arrays
	1.4.6 ASCII Characters
	1.4.7 Boolean Variables
	1.4.8 Strings

	1.5 Simple Input and Output
	1.5.1 Basic Console Output
	1.5.2 Keyboard Input

	1.6 The assert Statement
	1.7 Tips: Debugging Code
	1.8 Exercises

	Chapter 2: Flow of Control
	2.1 The if Statement
	2.1.1 A Single if Statement
	2.1.2 Example: Code for a Single if Statement
	2.1.3 if-else Statements
	2.1.4 Multiple if Statements
	2.1.5 Nested if Statements
	2.1.6 Boolean Variables

	2.2 Logical and Relational Operators
	2.3 The while Statement
	2.4 Loops Using the for Statement
	2.4.1 Example: Calculating the Scalar Product of Two Vectors

	2.5 The switch Statement
	2.6 Tips: Loops and Branches
	2.6.1 Tip 1: A Common Novice Coding Error
	2.6.2 Tip 2: Counting from Zero
	2.6.3 Tip 3: Equality Versus Assignment
	2.6.4 Tip 4: Never Ending while Loops
	2.6.5 Tip 5: Comparing Two Floating Point Numbers

	2.7 Exercises

	Chapter 3: File Input and Output
	3.1 Redirecting Console Output to File
	3.2 Writing to File
	3.2.1 Setting the Precision of the Output

	3.3 Reading from File
	3.4 Reading from the Command Line
	3.5 Tips: Controlling Output Format
	3.6 Exercises

	Chapter 4: Pointers
	4.1 Pointers and the Computer's Memory
	4.1.1 Addresses
	4.1.2 Pointer Variables
	4.1.3 Example Use of Pointers
	4.1.4 Warnings on the Use of Pointers

	4.2 Dynamic Allocation of Memory for Arrays
	4.2.1 Vectors
	4.2.2 Matrices
	4.2.3 Irregularly Sized Matrices

	4.3 Tips: Pointers
	4.3.1 Tip 1: Pointer Aliasing
	4.3.2 Tip 2: Safe Dynamic Allocation
	4.3.3 Tip 3: Every new Has a delete

	4.4 Exercises

	Chapter 5: Blocks, Functions and Reference Variables
	5.1 Blocks
	5.2 Functions
	5.2.1 Simple Functions
	5.2.2 Returning Pointer Variables from a Function
	5.2.3 Use of Pointers as Function Arguments
	5.2.4 Sending Arrays to Functions
	5.2.5 Example: A Function to Calculate the Scalar Product of Two Vectors

	5.3 Reference Variables
	5.4 Default Values for Function Arguments
	5.5 Function Overloading
	5.6 Declaring Functions Without Prototypes
	5.7 Function Pointers
	5.8 Recursive Functions
	5.9 Modules
	5.10 Tips: Code Documentation
	5.11 Exercises

	Chapter 6: An Introduction to Classes
	6.1 The Raison d'Être for Classes
	6.1.1 Problems That May Arise When Using Modules
	6.1.2 Abstraction, Encapsulation and Modularity Properties of Classes

	6.2 A First Example Simple Class: A Class of Books
	6.2.1 Basic Features of Classes
	6.2.2 Header Files
	6.2.3 Setting and Accessing Variables
	6.2.4 Compiling Multiple Files
	6.2.4.1 Using Makeﬁles to Compile Multiple Files

	6.2.5 Access Privileges
	6.2.6 Including Function Implementations in Header Files
	6.2.7 Constructors and Destructors
	6.2.8 Pointers to Classes

	6.3 The friend Keyword
	6.4 A Second Example Class: A Class of Complex Numbers
	6.4.1 Operator Overloading
	6.4.2 The Class of Complex Numbers

	6.5 Some Additional Remarks on Operator Overloading
	6.6 Tips: Coding to a Standard
	6.7 Exercises

	Chapter 7: Inheritance and Derived Classes
	7.1 Inheritance, Extensibility and Polymorphism
	7.2 Example: A Class of E-books Derived from a Class of Books
	7.3 Access Privileges for Derived Classes
	7.4 Classes Derived from Derived Classes
	7.5 Run-Time Polymorphism
	7.6 The Abstract Class Pattern
	7.7 Tips: Using a Debugger
	7.8 Exercises

	Chapter 8: Templates
	8.1 Templates to Control Dimensions and Verify Sizes
	8.2 Templates for Polymorphism
	8.3 A Brief Survey of the Standard Template Library
	8.3.1 Vectors
	8.3.2 Sets

	8.4 Tips: Template Compilation
	8.5 Exercises

	Chapter 9: Errors and Exceptions
	9.1 Preconditions
	9.1.1 Example: Two Implementations of a Graphics Function

	9.2 Three Levels of Errors
	9.3 Introducing the Exception
	9.4 Using Exceptions
	9.5 Tips: Test-Driven Development
	9.6 Exercises

	Chapter 10: Developing Classes for Linear Algebra Calculations
	10.1 Requirements of the Linear Algebra Classes
	10.2 Constructors and Destructors
	10.2.1 The Default Constructor
	10.2.2 The Copy Constructor
	10.2.3 A Specialised Constructor
	10.2.4 Destructor

	10.3 Accessing Private Class Members
	10.3.1 Accessing the Size of a Vector
	10.3.2 Overloading the Square Bracket Operator
	10.3.3 Read-Only Access to Vector Entries
	10.3.4 Overloading the Round Bracket Operator

	10.4 Operator Overloading for Vector Operations
	10.4.1 The Assignment Operator
	10.4.2 Unary Operators
	10.4.3 Binary Operators

	10.5 Functions
	10.5.1 Members Versus Friends

	10.6 Tips: Memory Debugging Tools
	10.7 Exercises

	Chapter 11: An Introduction to Parallel Programming Using MPI
	11.1 Distributed Memory Architectures
	11.2 Installing MPI
	11.3 A First Program Using MPI
	11.3.1 Essential MPI Functions
	11.3.2 Compiling and Running MPI Code

	11.4 Basic MPI Communication
	11.4.1 Point-to-Point Communication
	11.4.1.1 Blocking and Buffered Sends

	11.4.2 Collective Communication
	11.4.2.1 Barrier
	11.4.2.2 Combined Send and Receive
	11.4.2.3 Broadcast and Reduce
	11.4.2.4 Scatter and Gather

	11.5 Example MPI Applications
	11.5.1 Summation of Series
	11.5.2 Parallel Linear Algebra

	11.6 Tips: Debugging a Parallel Program
	11.6.1 Tip 1: Make an Abstract Program
	11.6.2 Tip 2: Datatype Mismatch
	11.6.3 Tip 3: Intermittent Deadlock
	11.6.4 Tip 4: Almost Collective Communication

	11.7 Exercises

	Chapter 12: Designing Object-Oriented Numerical Libraries
	12.1 Developing the Library for Ordinary Differential Equations
	12.1.1 Model Problems
	12.1.2 Finite Difference Approximation to Derivatives
	12.1.3 Application of Finite Difference Methods to Boundary Value Problems
	12.1.3.1 Model Problem 1
	12.1.3.2 Model Problem 2

	12.1.4 Concluding Remarks on Boundary Value Problems in One Dimension

	12.2 Designing a Library for Solving Boundary Value Problems
	12.2.1 The Class SecondOrderOde
	12.2.2 The Class BoundaryConditions
	12.2.3 The Class FiniteDifferenceGrid
	12.2.4 The Class BvpOde
	12.2.5 Using the Class BvpOde

	12.3 Extending the Library to Two Dimensions
	12.3.1 Model Problem for Two Dimensions
	12.3.2 Finite Difference Methods for Boundary Value Problems in Two Dimensions
	12.3.3 Setting Up the Linear System for the Model Problem
	12.3.4 Developing the Classes Required

	12.4 Tips: Using Well-Written Libraries
	12.5 Exercises

	Appendix A Linear Algebra
	A.1 Vectors and Matrices
	A.1.1 Operations Between Vectors and Matrices
	A.1.2 The Scalar Product of Two Vectors
	A.1.3 The Determinant and the Inverse of a Matrix
	A.1.4 Eigenvalues and Eigenvectors of a Matrix
	A.1.5 Vector and Matrix Norms

	A.2 Systems of Linear Equations
	A.2.1 Gaussian Elimination
	A.2.1.1 Gaussian Elimination Without Pivoting
	A.2.1.2 LU Decomposition
	A.2.1.3 Gaussian Elimination with Pivoting

	A.2.2 The Thomas Algorithm
	A.2.3 The Conjugate Gradient Method

	Appendix B Other Programming Constructs You Might Meet
	B.1 C Style Output
	B.2 C Style Dynamic Memory Allocation
	B.3 Ternary ?: Operator
	B.4 Using Namespace
	B.5 Structures
	B.6 Multiple Inheritance
	B.7 Class Initialisers

	Appendix C Solutions to Exercises
	C.1 Matrix and Linear System Classes
	C.2 ODE Solver Library

	Further Reading
	Mathematical Methods and Linear Algebra
	C++ Programming
	The Message-Passing Interface (MPI)

	Index

