
1

Chapter 16

Drawing in a Window

2

The Window Client Area
 A coordinate system that is local to the window.
 It always uses the upper-left corner of the client area as its

reference point.

Figure 16-1

3

Graphical Device Interface (GDI)

 You don’t draw pictures directly to the
screen.

 You must define the graphical output
(lines, circles, text) using the Graphical
Device Interface.

 The GDI enables you to program graphical
output independently of the hardware

 Such as the display screen, printers, plotters

4

What Is a Device Context?
 You must use a device context to draw anything

on a graphical output device.
 In a word, a device context is a data structure

defined by Windows.
 A device context contains attributes such as

 Drawing color
 Background color
 Line thickness
 Font
 Mapping mode

 Your output requests are specified by device-
independent GDI function calls.
 A device context contains information that allows

Windows to translate those requests into actions on the
particular physical output device.

5

Mapping Modes (1)

 MM_TEXT

 A logical unit is one device pixel with positive x
from left to right, and positive y from top to
bottom of the window client area.

(0,0)

Figure 16-1

6

Mapping Modes (2)

 MM_LOENGLISH (P.947)
 A logical unit is 0.01 inches with positive x from left to

right, and positive y from the top of the client area
upwards.

 Consistent with what we learned in high school.

 By default, the point at the upper-left corner has the
coordinates (0,0) in every mapping mode.

 Coordinate are always 32-bit signed integers.

Figure 16-2

7

The View Class in Your Application

 In the class CSketcherView, the function
OnDraw() is called when a WM_PAINT

message is received in your program.

 Windows sends this message to your program
whenever it requires the client area to be
redrawn.

 The user resizes the window

 Part of your window was previously “covered” by
another window

8

The OnDraw() Member Function

void CSketcherView::OnDraw(CDC* pDC)

{

CSketcherDoc* pDoc = GetDocument();

ASSERT_VALID(pDoc);

if (!pDoc)

return;

// TODO: add draw code for native data here

}

Returns the address of the
document object related to the

current view (P.878)

Make sure the pointer pDoc
contains a valid address.

(P.768)

Make sure the pointer pDoc is
not null.

9

Assertion Failed

10

The CDC Class

 You should do all the drawing in your program
using members of the CDC class.
 C – Class

 DC – Device Context

 There are over a hundred member functions of
this class.

 Sometimes you use objects of CClientDC
 It is derived from CDC, and thus contains all the

members we will discuss.

 Its advantage is that CClientDC always contains a device
context that represents only the client area of a window.

11

Current Position

 In a device context, you draw entities
such as lines, and text relative to a
current position.

 You may set the current position by calling
the MoveTo() function.

12

MoveTo()
 The CDC class overloads the MoveTo() function in two

versions to provide flexibility.
 CPoint MoveTo(int x, int y);

 CPoint MoveTo(POINT aPoint);

 POINT is a structure defined as:
typedef struct tagPOINT

{

LONG x;

LONG y;

} POINT;

 CPoint is a class with data members x and y of type LONG.

 The return value from the MoveTo() function is a CPoint
object that specifies the position before the move.
 This allows you to move back easily.

13

Drawing Lines

Figure 16-3

14

LineTo()

 The CDC class also defines two versions of
the LineTo() function

 BOOL LineTo(int x, int y);

 BOOL LineTo(POINT aPoint);
 You may use either a POINT struct or a CPoint object

as the argument.

15

Ex16_1 (P.952)
 When the LineTo() function is executed, the current

position is changed to the point specifying the end of the
line.
void CSketcherView::OnDraw(CDC* pDC)
{

CSketcherDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);
if (!pDoc)

return;

pDC->MoveTo(50,50);
pDC->LineTo(50,200);
pDC->LineTo(150,200);
pDC->LineTo(150,50);
pDC->LineTo(50,50);

}

16

Figure 16-4 (P.952)

(50,50)

(50,200) (150,200)

(150,50)

17

Drawing Rectangles & Circles
void CSketcherView::OnDraw(CDC* pDC)

{

CSketcherDoc* pDoc = GetDocument();

ASSERT_VALID(pDoc);

if (!pDoc)

return;

pDC->Rectangle(50,50, 150, 150);

pDC->Ellipse(50,50, 150,150);
pDC->Ellipse(200,50, 400,150);

}

18

A circle is a special ellipse

(50,50)

(150,150)

(200,50)

(400,150)

Exercise: Lines and Rectangles

19

 Create an MFC
application.

 Modify the
OnDraw() member
function of your
View class, to draw
a figure like this.

 The coordinates are
for your reference.
You don’t need to
show them.

(150,150)

(200,200)

Exercise: Circles

 Use a for-loop in
OnDraw() to draw a
figure like this.

 Note that a rectangle or
an ellipse has a solid
background color
(default to be white).
Therefore, if you plot
the smaller circles first,
they will be covered by
larger ones.

20

(200,200)

Exercise: Square Wave

 Write a program to draw the square wave
below.

 Observe the pattern. You can see it is a
repetition of 8 periods, so you can use a
for-loop to easy repeat the same pattern.

21

Exercise: Sine Wave

 Write a program to draw
the sine wave from 0
degree to 720 degree.

 Recall that you learned
in Calculus class that,
you can approximate a
smooth curve by a
series of line segments.

22

x=0o

x=360o

x=90o

x=270o

23

Arc

 Another way to draw circles is to use the Arc()
function.
 BOOL Arc(int x1, int y1, int x2, int y2, int x3, int y3, int

x4, int y4);

 (x1, y1) and (x2, y2) define the upper-left and lower-right
corners of a rectangle enclosing the circle (ellipse).

 The points (x3, y3) and (x4, y4) define the start and end
points of the arc, which is drawn counterclockwise.

 If (x4, y4) is identical to (x3, y3), you get a circle.

 BOOL Arc(LPCRECT lpRect, POINT Startpt, POINT Endpt);

 lpRect points to an object of the class CRect, which has
four public data members: left , top, right, bottom.

24

Drawing with the Arc() Function

void CSketcherView::OnDraw(CDC* pDC)
{

CSketcherDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);
if (!pDoc)

return;

pDC->Arc(50,50,150,150,100,75,150,100);

CRect* pRect = new CRect(250,50,300,100);
CPoint Start(275,100);
CPoint End(250,75);
pDC->Arc(pRect, Start, End);
delete pRect;

}

(50,50)

(150,150)

(100,75)

(150,100)

(275,100)(250,75)

25

Figure 16-5 (P.954)

26

Drawing in Color

27

Using a Pen
 Declare a pen object and initialize it as a red solid

pen drawing a line 2 pixels wide (P.955)
CPen aPen;
aPen.CreatePen(PS_SOLID, 2, RGB(255, 0, 0));

CPen* pOldPen = pDC->SelectObject(&aPen);
pDC->Arc(50,50,150,150,100,75,150,100);

pDC->SelectObject(pOldPen);
CRect* pRect = new CRect(250,50,300,100);
CPoint Start(275,100);
CPoint End(250,75);
pDC->Arc(pRect, Start, End);
delete pRect;

28

Pen Style

 BOOL CreatePen(int aPenStyle, int
aWidth, COLORREF aColor);

 PS_SOLID – solid line

 PS_DASH – dashed line

 PS_DOT – dotted line

 PS_DASHDOT – alternating dashes and dots

 PS_DASHDOTDOT – alternating dashes and
double dots.

 PS_NULL – draw nothing

29

Creating a Brush
 A brush is actually an 8x8 block of patterns that’s repeated over

the region to be filled.
 All closed shapes in CDC will be filled with a brush (and a color).
 Select the brush into the device context by calling the

SelectObject() member (similar to selecting a pen).

CBrush aBrush(RGB(0,255,255));

CBrush* pOldBrush =
pDC->SelectObject(&aBrush);

const int width = 50;
const int height = 50;
int i;
for (i=0; i<6; i++)
pDC->Rectangle(i*2*width, 50,i*2*width+50, 150);

pDC->SelectObject(pOldBrush);

30

Solid Brush

DeleteObject() (P.956)
CBrush aBrush;

for (int i=0; i<25; i++)

{

aBrush.CreateSolidBrush(RGB(0,i*10,i*10));

CBrush* pOldBrush = pDC->SelectObject(&aBrush);

pDC->Rectangle(i*20, 10, i*20+10, 100);

aBrush.DeleteObject();

}

31

32

Hatching Style
 HS_HORIZONTAL

 HS_VERTICAL

 HS_FDIAGONAL

 HS_BDIAGONAL

 HS_CROSS

 HS_DIAGCROSS

CBrush aBrush;

aBrush.CreateHatchBrush(HS_DIAGCROSS,
RGB(0,255,255));

CBrush* pOldBrush =
static_cast<CBrush*> (pDC->SelectObject(&aBrush));

SketcherView.cpp
void CSketcherView::OnDraw(CDC* pDC)

{

CSketcherDoc* pDoc = GetDocument();

ASSERT_VALID(pDoc);

if (!pDoc)

return;

CBrush aBrush(HS_DIAGCROSS, RGB(0,255,255));

CBrush* pOldBrush =
pDC->SelectObject(&aBrush);

const int width = 50;

const int height = 50;

int i;

for (i=0; i<6; i+=2)

pDC->Rectangle(i*2*width, 50,i*2*width+50, 150);

pDC->SelectObject(pOldBrush);

for (i=1; i<6; i+=2)

pDC->Rectangle(i*2*width, 50,i*2*width+50, 150);

}

33

34

A Hatched Brush

The BrushHatch enumeration
typedef enum

{

HS_HORIZONTAL = 0x00000000,

HS_VERTICAL = 0x00000001,

HS_FDIAGONAL = 0x00000002,

HS_BDIAGONAL = 0x00000003,

HS_CROSS = 0x00000004,

HS_DIAGCROSS = 0x00000005

} BrushHatch;

CBrush aBrush;

for (int i=0; i<6; i++)

{

aBrush.CreateHatchBrush(i,
RGB(0,0,0));

CBrush* pOldBrush = pDC-
>SelectObject(&aBrush);

pDC->Rectangle(i*100+50, 50,
i*100+100, 150);

aBrush.DeleteObject();

}

35

Summary

 The client coordinate system

 Drawing in the client area

 Device contexts

 Mapping modes

 Drawing in a window

 Line, Rectangle, Ellipse, Arc

 Pen

 Brush

36

Homework: Pentagon

 Draw a pentagon like
this.

 You may need to
include <cmath> if
you want to all the
sin/cos functions.

37

(cos,sin)(cos2,sin2)

(cos4,sin4)

(cos3,sin3)

Homework

 Use LineTo() and
Ellipse() to

draw the following
figure.

 Hint: You may
need to include
<cmath> to utilize
the sin() and
cos() function.

38

Homework

 Use
CreateSolidBrush()
to write a program
generating the
output as shown in
this figure.

 Demonstrate to TA
before 17:00.

39

如何學好程式設計

整理筆記

學以致用

40

